Cho hình thang ABCD có A - D = 30 ; B = 4.C. Tính số đo các góc của hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm
Nên ta có : DH+CK=4 (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :
\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình :
\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)
\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)
\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)
Tick hộ nha bạn 😘
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
A B C D
Ta có : AB//CD
=> A + D = 180* ( 2 góc trong cùng phía ) ( 1)
A - D = 30 => D = A-30 (2)
Từ (1) và (2) => A + A - 30 = 180*
2A - 30 = 180*
2A = 180 + 30 = 210 *
A = 105* => D = 75*
Lại có B + C = 180*
B = 4C
=> 4C + C = 180*
5C = 180*
C = 36*
=> B = 144
Vậy...............