Cho A = 2010+ 2011 x 2012 ; B = 2012 x 2013 – 2014
Tính A: B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
BẠN LẬT SBT TOÁN 7 (TẬP1) TRANG 53 BÀI 8.6 NGƯỜI TA ĐÃ CHỨNG MINH ĐƯỢC x:y:z=a:b:c
=> x =a*m;y=b*m;z=c*m
=>p=(a*m)^2010+(b*m)^2010+(c*m)^2010=m^2010(a^2010+b^2010+c^2010)=m^2010*2013
BÀI NÀY HỘI NGỘ
THANK YOU SO MUCH
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
\(\frac{A}{B}=\frac{2010+2011\times2012}{2012\times2013-2014}\)
B = 2012 x 2013 - 2014 = 2012 x (2011+2) - 2014 = 2012 x 2011 + 2012 x 2 - 2014 = 2012 x 2011 + 2010 = 2010 + 2011 x 2012
Thay B vào biểu thức tính thương, ta được:
\(\frac{A}{B}=1\)
Đáp số: 1
Nếu mình giúp đc bạn, thì cho mình nhé!
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
/x-2011/ = x - 2012
<=> x -2011 = x-2012 (1) hoặc x-2011= - (x-2012) (2)
từ (1) => x-2011 = x-2012
<=> x-x = -2012+2011
<=> 0x = -1 (vô lí)
từ (2) => x-2011 = - ( x-2012)
<=> x-2011 = -x + 2012
<=> x+x = 2012 + 2011
<=> 2x =4023
<=> x =2011,5
Có : \(2009+2010>\dfrac{2009}{2010}\) ; \(2011+2012>\dfrac{2011}{2012}\)
\(\dfrac{2011}{2010}>1\) ; \(\dfrac{2010}{2011}< 1\) \(\Rightarrow\dfrac{2011}{2010}>\dfrac{2010}{2011}\)
Ta có : \(2009+2010+\dfrac{2011}{2010}+2011+2012>\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(\Leftrightarrow B>A\)
Hay \(A< B\)
cho mk hỏi chút sao chỗ từ (1), (2) lại suy ra đc 1= x+y-xy vậy?
Bài ni t mần cho phát chán nó rồi:))
Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)
Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương
Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)
Bài giải
Ta có:
2010 + 2011 x 2012 /2012 x 2013 – 2014
= ( 2010 + 2011 x 2012) / (2012 x (2011 + 2) – 2014)
= ( 2010 + 2011 x 2012) / (2012 x 2011) + ((2012 x2 ) – 2014)
= ( 2010 + 2011 x 2012) / (2012 x 2011) + 2010
= 1/1
= 1
nhin vao de la bik = 1 rui ko can phai lam dai dong vay dau