K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Đáp án C

Áp dụng trường hợp bằng nhau thứ ba của tam giác ta thấy cần thêm một điều kiện về góc kề cạnh đó  M ^   C ^

26 tháng 10 2019

5 tháng 9 2018

8 tháng 4 2019

Ta có hai tam giác ABC và tam giác NPM có  B C = P M , B ^ = P ^ = 90 0 mà BC, PM là hai cạnh góc vuông của tam giác ABC và NPM nên để hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông thì ta cần thêm điều kiện CA = MN

Đáp án C

30 tháng 7 2019

Bài 1: Cho tam giác ABC và tam giác NPM có BC = PM; ∠B = ∠P. Cần điều kiện gì để tam gác ABC bằng tam giác NPM theo trường hợp góc – cạnh – góc?A. ∠M = ∠A            B. ∠A = ∠P            C. ∠C = ∠M            D. ∠A = ∠NBài 2: Cho hai tam giác ABC và tam giác MNP có ∠A = ∠M, ∠B = ∠N. Cần điều kiện gì để hai tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh – góc?A. AC = MP            B. AB = MN            C. BC = NP            D. AC = MNBài...
Đọc tiếp

Bài 1: Cho tam giác ABC và tam giác NPM có BC = PM; ∠B = ∠P. Cần điều kiện gì để tam gác ABC bằng tam giác NPM theo trường hợp góc – cạnh – góc?

A. ∠M = ∠A            B. ∠A = ∠P            C. ∠C = ∠M            D. ∠A = ∠N

Bài 2: Cho hai tam giác ABC và tam giác MNP có ∠A = ∠M, ∠B = ∠N. Cần điều kiện gì để hai tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh – góc?

A. AC = MP            B. AB = MN            C. BC = NP            D. AC = MN

Bài 3: Cho tam giác ABC và tam giác MNP có ∠B = ∠N = 90°; AC = MP, ∠C = ∠M. Phát biểu nào sau đây đúng?

A. ΔABC = ΔPMN

B. ΔACB = ΔPNM

C. ΔBAC = ΔMNP

D. ΔABC = ΔPNM

3
21 tháng 4 2022

C

B

D

31 tháng 12 2021

Xét ΔABC và ΔNPM có 

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{BC}{PM}\)

Do đó: ΔABC∼ΔNPM

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM