Cho hình chóp S.ABCD có đáy là hình chữ nhật AB=3; AD=2. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho
A. V = 32 π 3
B. V = 20 π 3
C. V = 16 π 3
D. V = 10 π 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức thể tích của hình chóp ta có: V = 1 3 . h . S A B C D
Chọn đáp án C.
Đáp án A
Ta có A ⇔ = a 2 + a 2 2 = a 3
S
A
=
A
C
tan
60
0
=
a
3
.
3
=
3
a
;
S
A
B
C
D
a
.
a
2
=
a
2
2
Thể tích hình chóp S.ABCD là:
V = 1 3 S A . S B A C D = 1 3 .3 a . a 2 2 = a 3 2
Đáp án D
Diện tích hình chữ nhật ABCD là S = 2a2, chiều cao SA =a.
Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3
Đáp án A
Theo bài ra ta có:
SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).