cho hình thang vuông abcd có : a=d=90 AB = 2 CD ; AD = CD .M là trung điểm AD . Tính góc BMC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\)
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
Diện tích hình thang này là 1 hằng số \(S=\dfrac{1}{2}\left(m+n\right)\sqrt{mn}\) nên không thể có giá trị lớn nhất hay nhỏ nhất gì đó được
Theo như đề bài thì m; n là hằng số cố định chứ không phải là các số thay đổi nên ta ko thể áp dụng BĐT cho chúng (chỉ áp dụng BĐT để tìm min-max trong trường hợp chúng là các số thay đổi).
Xét \(\Delta\)ABD vuông tại A
Áp dụng định lí Py-ta-go, ta có:
BD2 = AD2 + AB2
\(\Rightarrow\) BD2 = 122 + 52 = 169 (cm)
\(\Rightarrow\) BD = \(\sqrt{169}\) = 13 (cm) Xét \(\Delta\) BCD có BC = BD = 13 cm \(\Rightarrow\) \(\Delta\) BCD cân tại B Qua B kẻ đường cao BH cắt CD tại H \(\Rightarrow\) BH cũng là đường trung tuyến ( vì \(\Delta\) BCD cân tại B ) Xét tứ giác ABHD có \(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90\)0 \(\Rightarrow\) tứ giác ABHD là HCN \(\Rightarrow\) HB = AD = 12 cm Xét \(\Delta\) BHC có \(\widehat{BHC}=90\)0 Áp dụng định lí Py-ta-go, ta có: BC2 = HB2 + HC2 \(\Rightarrow\) 132 = 122 + HC2 \(\Rightarrow\) HC2 = 132 - 122 = 25 ( cm) \(\Rightarrow\) HC = \(\sqrt{25}=5\left(cm\right)\) Vì BH cũng là đường trung tuyến (cmt) \(\Rightarrow\) CD = 2*5 = 10 (cm) \(\Rightarrow\) đpcm