Cho hình thang ABCD ( AB // CD) . Biết AB = 3 cm; AD = 4 cm ; BD = 6cm và góc DAB= góc DBC
a.Chứng minh tam giác ADB đồng dạng tam giác BCD
b.Tính độ dài BC và CD.
c.Tính tỉ số diện tích của hai tam giác ADB và BCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Kẻ BK ^CD tại K Þ AB = HK
S A B C D = ( 2 H K ) + 2 K C ) . A H 2 = H C . A H = 96 c m 2
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\)tứ giác ABCE là hình bình hành \(\Rightarrow\)AB=CE=4cm;AE=BC=5cm\(\Rightarrow\)DE=CD-EC=4cm
xét \(\Delta\) ADE có:AD2+DE2=32+42=25
AE2=52=25\(\Rightarrow\)AD2+DE2=AE2
\(\Rightarrow\Delta\)ADE vuông tại D \(\Rightarrow AD\perp DE\) hay \(AD\perp DC\)
\(\Rightarrow\)tứ giác ABCD là hình thang vuông
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
Đáy lớn hình thang ABCD là : 18 x 3/2 = 27 (cm)
Độ dài đoạn MB là : 18 – 12 = 6 (cm)
MB chính là đáy của ∆ MBC,chiều cao của ∆ MBC ( cũng là chiều cao của hình thang AMCD)
42 × 2 6 = 14 (cm)
Diện tích hình thang AMCD là :
( 12 + 27 ) × 14 2 = 273 (cm2)
Đáp số 273 cm2
a. vì AB//CD => góc ABD=góc BDC
xét tam giác ADB và tam giác BCD có:
góc DAB=góc DBC (gt)
góc ABD= góc BDC (cmt)
=> tam giác ADB ~ tam giác BCD (c.c)
b. vì tam giác ADB ~ tam giác BCD
=> \(\dfrac{AD}{BC}\)=\(\dfrac{AB}{BD}\)=\(\dfrac{DB}{CD}\)
=> BC= \(\dfrac{AD.BD}{AB}\)= \(\dfrac{4.6}{3}\)= 8(cm)
=> CD= \(\dfrac{BD^2}{AB}\)= \(\dfrac{6^2}{3}\)= 12 (cm)