K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .

=> AM = BM = CM = KM .

Xét \(\Delta MKC\)\(\Delta MAB\) có :

\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)

=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )

- Xét tứ giác ABKC có :

AM = BM = CM = KM và tam giác ABC vuông tại A .

=> Tứ giác ABKC là hình chữ nhật.

=> KC vuông góc với AC .

c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :

\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)

28 tháng 6 2021

thanks

 

a) Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

 

Kẻ đường cao : BH , AI , CK 
Ta có: sinA = BH / c ; sinB = AI / c 
=> sinA/sinB = BH / AI (1) 
Mà BH = a.sinC ; AI = b.sinC 
=> BH/AI = a/b (2) 
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB 
Bạn chỉ việc nói chứng minh tượng tự , ta có: 
b/sinB = c/sinC ; c/sinC = a/sinA 
Từ đó suy ra a /sinA = b / sinB = c /sinC 
Chúc bạn học tốt

Kẻ đường cao : BH , AI , CK 
Ta có: sinA = BH / c ; sinB = AI / c 
=> sinA/sinB = BH / AI (1) 
Mà BH = a.sinC ; AI = b.sinC 
=> BH/AI = a/b (2) 
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB 
Bạn chỉ việc nói chứng minh tượng tự , ta có: 
b/sinB = c/sinC ; c/sinC = a/sinA 
Từ đó suy ra a /sinA = b / sinB = c /sinC 
Chúc bạn học tốt

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

13 tháng 5 2022

Thanks. Mà câu c đou:)

 

23 tháng 3 2016

Áp dụng định lý hàm số COS ta có: 
AC^2 = AB^2+AC^2 - 2AB.AC.cosB 
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252 
Vì BD là phân giác của góc B nên theo tính chất ta có: 
AD/AC =AB/BC = 6/12 = 1/2 
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252 
Áp dụng định lý hàm số COS đồi với tam giác ABD có: 
AD^2=AB^2+BD^2 - 2AB.BD.cosB 
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2) 
<=> BD^2 - 6BD + 8 =0 
<=> BD = 4 hoặc BD =2 
Vậy: BD = 4 (cm) 
Trên đây là bài giải với ĐK: BD là phân giác trong. 
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC 
DO VẬY BD = 8 cm 

hoac vay

23 tháng 3 2016

o bam nham