K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC^2=7.5^2=56.25\)

\(AB^2+AC^2=4.5^2+6^2=56.25\)

Do đó: \(BC^2=AB^2+AC^2\)

b: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Xét ΔMHC và ΔMKB có

MH=MK

\(\widehat{HMC}=\widehat{KMB}\)

MC=MB

Do đó: ΔMHC=ΔMKB

14 tháng 1 2020

Áp dụng ĐL pi - ta - go đảo :

\(AB^2+BC^2=AC^2\)

\(< =>4.5^2+6^2=7.5^2\)

Do \(4.5^2+6^2=7.5^2\)đúng 

=>ĐPCM

13 tháng 3 2018

Áp dụng định lí Py-ta-go,ta có:

BC2=AC2+AB2

      =4,52+62

      =20,25+36

      =56,25

\(\sqrt{56,25}\)=7,5

Suy ra tam giác ABC là tam giác vuông.

17 tháng 1 2016

Ta có: 20,25+36=56,25

=>4,52+62=7,52

Hay AB2+BC2=AC2

=> Tam giác ABC vuông tại B

17 tháng 1 2016

Ta có:

AC2 = (7,5)2 = 56,25 (cm) (1)

BC2 = 62 = 36 (cm) 

AB2 = (4,5)2 = 20,25 (cm)

=> BC2 + AB2 = 36 + 20,25 = 56,25 (cm) (2)

Từ (1) và (2) => AC2 = BC2 + AB2

Theo đ/lí Pi-ta-go đảo

=> Tam giác ABC vuông tại B.

 

3 tháng 5 2018

a, AH = 3,6cm

b, BH = 4,8cm, CH = 2,7cm

18 tháng 9 2018

Ta có:

 

A B 2 = 6 2 = 36 A C 2 = 4 , 52 = 20 , 25 B C 2 = 7 , 52 = 56 , 25

 

Vì A B 2 + A C 2  = 36 + 20,25 = 56,25 =  B C 2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

5 tháng 4 2018

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi khoảng cách từ M đến BC là MK. Ta có:

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

 

 

18 tháng 7 2018

Ý bạn là giả thiết ko cho ABC là tam giác vuông chứ gì, bạn phải tự cm: Ta có: AC2+AB2=56,25=BC2 <=> Tam giác ABC vuông tại A.

=> AH=AB.AC/BC=3,6 ; BH=AB2/BC=4,8 ; CH=BC-BH=2,7