K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

a) Áp dụng định lý Pi-ta-go vào tamgiac vuông ABC, ta được:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=9^2+12^2=81+144=225\)

\(\Rightarrow BC=\sqrt{225}=15\)(cm)

Vậy BC=15 (cm)

b) Xét 2 tamgiac vuông ABD và MBD, có

BD cạnh huyền chung

\(\widehat{ABD}=\widehat{MBD}\) ( vì BD là phân giác)

\(\Rightarrow\Delta ABD=\Delta MBD\left(ch-gn\right)\)

c) Xét 2 tamgiac vuông ADE và MDC, có

AD = MD ( \(\Delta ABD=\Delta MBD\) )

\(\widehat{ADE}=\widehat{MDC}\) (đ.đ)

\(\Rightarrow\Delta ADE=\Delta MDC\) (cgv-gnk)

Ta có: AB + EA = BE

BM + CM = BC

Mà AB = BM ( \(\Delta ABD=\Delta MBD\) )

AE = CM ( \(\Delta ADE=\Delta MDC\) )

=> BE = BC

=> \(\Delta BEC\) cân tại B

d) Ta có: I là giao điểm của EP và BK

=> I nằm trên BK

=> 3 điểm B, I, K thẳng hàng

=> \(\widehat{BIQ}+\widehat{KIQ}=180^0\)(kề bù)

\(\widehat{KIQ}=\widehat{BIC}\left(đ.đ\right)\)

=> \(\widehat{BIQ}+\widehat{BIC}=180^0\)

Vậy 3 điểm Q, I, C thẳng hàng


A B C K M D E P Q I (hình ảnh chỉ mang t/c minh họa)

11 tháng 4 2017

thank you very muchyeuhihihehe

4 tháng 3 2021

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

4 tháng 3 2021

ko b oi

AH=căn 12^2-9^2=3*căn 7(cm)

CH=AH^2/HB=9*7/9=7(cm)

BC=9+7=16cm

AC=căn CH*BC=4*căn 7(cm)

23 tháng 7 2023

Xét tam giác \(ABH\) vuông tại H có

\(AH^2+HB^2=AB^2\left(Pytago\right)\)

\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét tam giác ABC vuông tại A

\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

16 tháng 9 2023

limdim

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

18 tháng 3 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow9^2+12^2=BC^2\)

\(\Rightarrow BC=15\)

Xét tam giác ABC và tam giác AHC ta có:

Góc C: chung

Góc BAC = Góc AHC (=900)

=> Tam giác ABC ~ Tam giác HAC (g - g)

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Rightarrow\dfrac{12}{HC}=\dfrac{15}{12}=\dfrac{5}{4}\)

\(\Rightarrow HC=12:\dfrac{5}{4}=12.\dfrac{4}{5}=9,6\left(cm\right)\)

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

24 tháng 12 2016

ngu quá

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: CD=căn AC^2+AD^2=13cm