K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

A B C H D E M

23 tháng 3 2022

a, Áp dụng Đ. L. py-ta-go, có:

BC2=AC2+AB2

=>BC2=82+62

           =64+36

           =100.

=>BC=10cm.

b, cm gì vậy bạn?

c, Xét tgABM và tgMHE, có: 

AB=HE(gt)

góc BMA= góc HME(2 góc đối đỉnh)

góc A= góc HME(=90o)

=>tg AMB= tg HME(cgv-gnk)

=>MA = MH(2 cạnh tương ứng)

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

\(=2\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Áp dụng định lí Pytago ta có

\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)

13 tháng 3 2022

Áp dụng định lí Py-ta-go trong tam giác vuông ABC có

BC2= AC2+AB2

hay AC2+AB2 = BC2

82+62= BC2

64+ 36= 100

BC2= 100

BC = √100 = 10 (cm)

25 tháng 5 2017

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)