Bài 5 (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm, đường cao AH và phân giác BD căt
nhau tại I (H thuộc BC, D thuộc AC)
a) Tính độ dài AD, DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: HF⊥AB
AC⊥AB
Do đó:HF//AC
a: Xét ΔABE và ΔHBE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔABE=ΔHBE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
BC=DE
=>ΔABC=ΔADE
b: AE=AC
góc EAC=90 độ
=>góc ACE=góc AEC=45 độ
Bài 5:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
Vậy: BC=13cm
b) Xét ΔABE vuông tại B và ΔDBE vuông tại B có
EB chung
BA=BD(B là trung điểm của AD)
Do đó: ΔABE=ΔDBE(hai cạnh góc vuông)
Suy ra: EA=ED(Hai cạnh tương ứng)
Xét ΔEAD có EA=ED(cmt)
nên ΔEAD cân tại E(Định nghĩa tam giác cân)
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm