Cho tam giác ABC vuông tại A. Biết rằng AB = 4cm; AC = 5cm. Giá trị của sin A B C ^ = ?
A. 5 4
B. 4 5
C. 4 41
D. 5 41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)
hay \(AB=\dfrac{4}{5}BC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)
\(\Leftrightarrow BC^2=225\)
hay BC=15cm
\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)
Ta có: \(AC=AD+DC\)
⇔ \(AC=4+5\)
⇔ \(AC=9\) ( cm )
Áp dụng hệ thức lượng giác vào △ ABC, ta có:
\(AB^2=AD.AC\) ⇔ \(AB^2=4.9=36\) ⇔ \(AB=6\) ( cm )
Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
⇔ \(BC^2=6^2+9^2\)
⇔ \(BC^2=117\)
⇒ \(BC=\sqrt{117}=3\sqrt{13}\)
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
a, Ta có :
\(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\)
\(=> AB^2+AC^2=BC^2\)
\(=> \) △ABC vuông tại A
b, Xét △BAH và △BEH có :
\(\widehat{BHA}=\widehat{BHE}=90^o\)
BH : chung
HE = HA (GT)
=> △BAH = △BEH (c.g.c)
=> BA = BE (2 cạnh tương ứng)
c, Xét △CAH và △CEH có :
\(\widehat{CHA}=\widehat{CHE}=90^o\)
\(CH\) :chung
AH = HE (GT)
=> △CAH = △CEH (c.g.c)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CH là phân giác \(\widehat{ACE}\)
d, Xét △BAC và △BEC có :
\(BA=BE (câu a)\)
CA = CE (△CAH = △CEH)
BC : chung
=> △BAC = △BEC(c.c.c)
=> \(\widehat{BAC}=\widehat{BEC}\)
mà \(\widehat{BAC}=90^o\)
\(=> \widehat{BEC}=90^o\)
=> △BEC vuông tại E
Đáp án D
Áp dụng định lý Py – ta – go ta có: