choa) Cho tam giác ABC vuông tại A. Tính độ dài BC biết AB = 7cm; AC = 24cm.
b) Cho tam giác EDF cân tại D có góc D=100o . Tính số đo của góc E.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 7 cm 2 cm 2 cm
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
A B C
Ta có : \(\hept{\begin{cases}AB+AC=17\\AB-AC=7\end{cases}\Rightarrow}\hept{\begin{cases}AC=5\\AB=12\end{cases}\left(cm\right)}\)
Do \(\Delta ABC\) vuông tại A
\(\Rightarrow AB^2+AC^2=BC^2\) ( định lý Pytago )
\(\Rightarrow12^2+5^2=BC^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13\left(BC>0\right)\)
Vậy : \(BC=13\left(cm\right)\)
Theo bài ta có: \(AB+AC=17cm\); \(AB-AC=7cm\)
\(\Rightarrow\left(AB+AC\right)+\left(AB-AC\right)=17+7\left(cm\right)\)
\(\Leftrightarrow2AB=24\left(cm\right)\)\(\Leftrightarrow AB=12\left(cm\right)\)
\(\Rightarrow AC=17-12=5\left(cm\right)\)
\(\Delta ABC\)vuông tại A \(\Rightarrow\)Áp dụng định lí Pytago ta có:
\(AB^2+AC^2=BC^2\)\(\Rightarrow BC^2=12^2+5^2=169\)\(\Rightarrow BC=13\left(cm\right)\)
Vậy \(BC=13cm\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Độ dài đoạn AB=(17+7):2=12 cm
Đọ dài đoạn AC=(17-7):2=5cm
Vì tam giác ABC vuông tại A
Áp dụng định lý PI-ta-go có:
BC2=AB2+AC2
=>BC2=122+52
=>BC2=144+25
=>BC2=169
=>BC=\(\sqrt{169}=13cm\)
Ta có: \(AB=AC=HA+HC=7+2=9\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H có:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{9^2-7^2}=4\sqrt{2}\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác BCH vuông tại H có:
\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(4\sqrt{2}\right)^2-2^2}=2\sqrt{7}\left(cm\right)\)
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 (định lý Pytago)
=> BC2 = 72 + 242
=> BC2 = 625
=> BC = 25 (cm)
b, Vì △EDF cân tại D => DEF = (180o - EDF) : 2 = (180o - 100o) : 2 = 80o : 2 = 40o