Cho ∆ABC vuông tại A (AB < AC). BK là tỉa phân giác của góc ABC (K thuộc AC). Kẻ KI vuông góc với BC tại I.a) Tính độ dài cạnh BC biết AB = 6cm; AC 8cm.b) Chứng minh: ∆ABK = ∆IBK, Từ đó suy ra KA=KI,c) Kẻ AD vuông góc với BC. Chứng minh: AI là tia phân giác của góc DAK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
=>BA=BH và EA=EH
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
\(\widehat{HBK}\) chung
Do đó: ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
c: Ta có: ΔBAC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Ta có: BK=BC
mà BC=10cm
nên BK=10cm
a: BC=căn 6^2+8^2=10cm
c: Xét ΔABC có
AH,BK là phân giác
AH cắt BK tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)