Trong tam giác ABC vuông tại A có AC =3; AB =4. Khi đó cos B bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Nón có
r = A B = 3 , h = A C = 4 , l = r 2 + h 2 = 5 ⇒ S t p = πr r + l = 3 π 3 + 5 = 24 π .
Chọn đáp án B.
Chọn đáp án B.
Nón có:
r = A B = 3 h = A C = 4 l = r 2 + h 2 = 5 ⇒ S t p = π r r + l = 3 π 3 + 5 = 24 π
a) ta có:BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
vậy theo định lý py-ta-go đảo thi suy ra:
\(\Delta ABC\)vuông tại A
hình ban tự vẽ nhé !!!
CM
a. Ta có:\(AB^2=3^2=9\)
\(AC^2=4^2=16\)
\(BC=5^2=25\)
\(\Rightarrow AB^2+AC^2=9+16=25=BC^2\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Áp dụng định lý Pi-ta-go đảo cho tam giác ABC :
ta có : tam giác ABC có \(AB^2+AC^2=BC^2\)
\(\Rightarrow\) tam giác ABC vuông tại A (ĐPCM)
b. Xét tam giác ABC và EBD có
\(\widehat{ABD}=\widehat{EBD}\)( BD là tia phân giác góc B )
\(BD\) là cạnh chung
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\Rightarrow\) tam giác ABD = EBD
\(\Rightarrow\)DA=DE ( cặp cạnh tương ứng )
A B C 3cm 4cm I M
Tam giác ABC vuông tại A => BC2 = AB2 + AC2 ( Theo định lý pitago )
=> BC2 = 32 + 42 = 9 + 16 = 25 = 52
=> BC = 5 (cm)
Tam giác IBC có IB = IC => Góc IBM = Góc ICM (định lý)
Xét tam giác BIM và tam giác CIM có :
IB = IC (gt)
Góc IBM = Góc ICM (cm trên)
Góc BMI = Góc IMC = 900 (gt)
=> tam giác BIM = tam giác CIM (CH - GN)
=> BM = MC (góc tương ứng)\
Mà BM + MC = BC = 5(cm)
=> BM + BM = 5 <=> 2BM = 5 => BM = 2,5 (cm)
Vậy BM = 2,5 (cm)
cos B = 4 5