K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

+)Xét tam giác ABC vuông tại A

 \( \implies\)\(AB^2+AC^2=BC^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(c^2+b^2=BC^2\)

\( \implies\) \(BC=\sqrt{b^2+c^2}\) 

+)Ta có : \(AD=\frac{1}{2}BC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

 \( \implies\) \(AD=\frac{1}{2}.\sqrt{b^2+c^2}\)

\( \implies\) \(AD=\frac{\sqrt{b^2+c^2}}{2}\)

+)Xét tam giác BAE vuông tại A 

\( \implies\) \(BE^2=AB^2+AE^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(BE^2=c^2+\left(\frac{b}{2}\right)^2\)

\( \implies\) \(BE^2=c^2+\frac{b^2}{4}\)

\( \implies\) \(BE=\sqrt{c^2+\frac{b^2}{4}}\)

+)Xét tam giác ABC có :

Hai đường trung tuyến AD ; BE cắt nhau tại G 

 \( \implies\) G là trọng tâm của tam giác ABC

\( \implies\) \(BG=\frac{2}{3}BE\)

Mà \(BE=\sqrt{c^2+\frac{b^2}{4}}\) 

\( \implies\) \(BG=\frac{2}{3}.\sqrt{c^2+\frac{b^2}{4}}\)

\( \implies\) \(BG=\frac{2}{3}.\sqrt{\frac{4c^2+b^2}{4}}\)

\( \implies\)  \(BG=\frac{2}{3}.\frac{\sqrt{4c^2+b^2}}{2}\)

\( \implies\) \(BG=\frac{\sqrt{4c^2+b^2}}{3}\)

+) \(AD=\frac{1}{2}BC=BD=DC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

+)G là trọng tâm của tam giác ABC 

\( \implies\) \(GD=\frac{1}{3}AD=\frac{1}{3}BD=\frac{1}{3}.\frac{\sqrt{b^2+c^2}}{2}=\frac{\sqrt{b^2+c^2}}{6}\) 

+)Để AD vuông góc với BE thì tam giác BGD là tam giác vuông tại G

\( \implies\) \(BG^2+GD^2=BD^2\) ( Theo định lý Py - ta - go )

 \( \implies\) \(\left(\frac{\sqrt{4c^2+b^2}}{3}\right)^2+\left(\frac{\sqrt{b^2+c^2}}{6}\right)^2=\left(\frac{\sqrt{b^2+c^2}}{2}\right)^2\)

\( \implies\) \(\frac{4c^2+b^2}{9}+\frac{b^2+c^2}{36}=\frac{b^2+c^2}{4}\)

\( \implies\)  \(\frac{4\left(4c^2+b^2\right)}{36}+\frac{b^2+c^2}{36}=\frac{9\left(b^2+c^2\right)}{36}\)

\( \implies\) \(16c^2+4b^2+b^2+c^2=9b^2+9c^2\)

\( \implies\) \(17c^2+5b^2=9b^2+9c^2\)

\( \implies\) \(8c^2=4b^2\)

\( \implies\) \(2c^2=b^2\)

\( \implies\) \(b=\sqrt{2c^2}\)

\( \implies\) \(b=\sqrt{2}c\) 

Vậy để AD vuông góc với BE thì : \(b=\sqrt{2}c\) 

13 tháng 3 2020

A B C c b D E G

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

21 tháng 3 2022

C

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm