Chứng minh rằng ƯCLN ( 2n+1 ; 6n+5 ) = 1
Các bạn giúp mình với!! Mình đang cần gấp.
Ai trả lời nhanh và đúng nhất thì mình tick cho!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)
Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d
Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau
Gọi d là ƯCLN(n+1,n+2)
=>n+1\(⋮\)d(1)
=>n+2\(⋮\)d(2)
Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d
=>n+2-n-1\(⋮\)d
=>1\(⋮\)d
=>d\(\in\)Ư(1)={1}
=>d=1
Vậy n+1 và n+2 nguyên tố cùng nhau
Chúc bn học tốt
a)Gọi d là ƯC(2n+1;6n+5) (d thuộc N*)
=>2n+1 chia hết cho d =>6n+6 chia hết cho d
=>6n+5 chia hết cho d
=>6n+6-6n-5 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(2n+1;6n+5)=1
=>đpcm
b)Gọi d là ƯC(3n+2;5n+3) (d thuộc N*)
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d =>15n+9 chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(3n+2;5n+3)=1
=>đpcm
Vì n \(\in\)N* => 2n + 3 \(\in\)N*
3n + 4 \(\in\)N*
Gọi d = ƯCLN(2n+3,3n+4)
=> (2n+3) \(⋮\)d và (3n+4) \(⋮\)d
=> [3(2n+3)] \(⋮\)d và [2(3n+4)] \(⋮\)d
=> (6n+9) \(⋮\)d và (6n+8) \(⋮\)d
=> [(6n+9) - (6n+8)] \(⋮\)d
=> (6n+9-6n-8) \(⋮\)d
=> [(6n-6n)+(9-8)] \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d = 1
Vậy ƯCLN(2n+3,3n+4) = 1 với n \(\in\)N*
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)