Cho nửa đường tròn (O; 2) đường kính AB, Vẽ các tiếp tuyến Ax, By, lấy điểm H trên (O). Vẽ tiếp tuyến của (O) cắt Ax, By tại M,N
a) Tính góc MON
b) C/m MN = AM + BN
c) Tính AM . Bn
d) C/m: AB là tiếp tuyến của đường tròn đường kính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
góc DMO+góc DBO=180 độ
=>DMOB nội tiếp
b: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc DOC=1/2*180=90 độ
Xét ΔDOC vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC
Trong đường tròn (O) ta có:
góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
Mình vẽ tạm trên Paint vì không biết vẽ nửa đường tròn trên đây nha '-'
Bài làm
a) Vì M là giao điểm của hai tiếp tuyến MN và Ax
=> OM là phân giác
=> \(\widehat{O_2}=\widehat{O_3}\Rightarrow2\widehat{O_2}=\widehat{HOA}\)
Vì N là giao điểm của hai tiếp tuyến MN và By
=> ON là phân giác
=> \(\widehat{O_1}=\widehat{O_4}\Rightarrow2\widehat{O_1}=\widehat{HOB}\)
Ta có: \(\widehat{HOA}+\widehat{HOB}=180^0\)(hai góc kề bù)
hay \(2\widehat{O_1}+2\widehat{O_2}=180^0\)
=> \(2\left(\widehat{O_1}+\widehat{O_2}\right)=180^0\)
=> \(\widehat{MON}=\frac{180^0}{2}=90^0\)
Vậy \(\widehat{MON}=90^0\)
b) Vì M là giao điểm của hai tiếp tuyến MN và Ax
=> AM = MH ( tính chất hai tiếp tuyến cắt nhau)
Vì N là giao điểm của hai tiếp tuyến MN và By
=> NB = NH (tính chất hai tiếp tuyến cắt nhau)
Ta có: MN = MH + NH
hay MN = AM + BN (đpcm)
c) Xét tam giác MON vuông tại O có:
OH là đường cao
Theo quan hệ giữa cạnh và đường cao
=> OH2 = MH . NH
hay R2 = MA . BN
Vậy AM . BN = R2