Cho a thuộc Z . Chứng tỏ rằng
a.a\(^2\)>0 ; -a\(^2\)< 0
b.Tìm giá trị nhỏ nhất của
A = (x-8)\(^2\)+ 2003
c.Tìm giá trị nhỏ nhất
B= -(x+5)\(^2\)+9
d.Tìm giá trị nhỏ nhất
C=( x-2)\(^2\)+ (y -1) + 2012
e.Tìm gí trị lớn nhất của
E = -(x-21)\(^2\)+99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a \(\inℤ\)nên có 2 trường hợp
TH1 : a là số nguyên âm
\(\Rightarrow\)a có dạng là (-b)
Mà (-b)2 = (-b).(-b) = b.b - là số nguyên dương
Nên a2 \(\ge\)0
TH2 : a là số nguyên dương
\(\Rightarrow\)a2 là số nguyên dương
Nên a2 \(\ge\)0
_HT_
( Cho hỏi -a2 hay là (-a)2 ạ ? )
Có \(\frac{a}{-b}=\frac{a\times\left(-1\right)}{-b\times\left(-1\right)}=\frac{-a}{b}\\\Leftrightarrow\frac{a}{-b}=\frac{-a}{b}\\ \frac{-a}{-b}=\frac{-a\times\left(-1\right)}{-b\times\left(-1\right)}=\frac{a}{b}\Leftrightarrow\frac{-a}{-b}=\frac{a}{b} \)
tôi có cách giải ngắn gọn và xúc tích hơn nhìu rồi.
nhưng dù sao thì cx cảm ơn nha
Giải thích các bước giải:
a2=a.aa2=a.a
Th1 a<0
=>−a2=−(−a)(−a)−a2=−(−a)(−a)
a2>=0với mọi a a2>=0với mọi a
=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0
a2a2=a.a
a<0
a2=(−a)(−a)=a2a2=(−a)(−a)=a2 >= 0 với mọi a
a>=0
a2>=0
Vt lại cho dễ hiểu
Ta có \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)
Th1: \(a\in Z;a\ge0\)
Khi đó a . a ≥ 0
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)
TH2: \(a\in Z;a< 0\)
Khi đó a . a > 0
\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)
Từ (1) và (2) => đpcm
T chỉ vt lại theo bài của bạn Linh thôi đóa
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\text{…}-\frac{1}{2^n}\)
\(A=1-\frac{1}{2^n}\)
Vậy A < 1 với n thuộc N*