K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 8 2017

Câu 1:

\(\left\{\begin{matrix} y_1=bx^3+ax^2+5x\\ y_2=ax^3+bx^2+5x\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y_1'=3bx^2+2ax+5\\ y_2'=3ax^2+2bx+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y_1'=3b\left [ \left ( x+\frac{a}{3b} \right )^2+\frac{5}{3b}-\frac{a^2}{9b^2} \right ]\\ y_2'=3a\left [ \left ( x+\frac{b}{3a} \right )^2+\frac{5}{3a}-\frac{b^2}{9a^2} \right ]\end{matrix}\right.\)

Để các hàm \(y_1,y_2\) không là hàm đồng biến thì \(y_1',y_2'\) không luôn lớn hơn $0$ với mọi \(x\in (-\infty,+\infty)\), tức là xảy ra cả trường hợp lớn hơn $0$ lẫn nhỏ hơn $0$ với mọi $x$. điều này xảy ra khi mà :

\(\left\{\begin{matrix} \frac{5}{3b}-\frac{a^2}{9b^2}<0\\ \frac{5}{3a}-\frac{b^2}{9a^2}<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 15b-a^2<0\\ 15a-b^2<0\end{matrix}\right.\)

\(\rightarrow a^4>225b^2>3375a\)

\(\Rightarrow a>15\) hay \(a\geq 16\). Tương tự, \(b\geq 16\)

Vì đề bài cần tìm min \(2a+b\) nên cần ưu tiên tính nhỏ hơn của $a$

Từ trên ta chọn \(a_{\min}=16\Rightarrow 15b<16^2=256\Rightarrow b\leq 17\)

Do đó \(16\leq b\leq 17\rightarrow b_{\min}=16\)

Do đó \(S_{\min}=(2a+b)_{\min}=48\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2017

Bài 2:

Để hàm số \(y=(x+m)^3(x+m^3)\) là hàm đồng biến thì \(y'>0\forall x\in (-\infty,+\infty)\)

Khai triển:

\(y'=4x^3+x^2(3m^3+9m)+x(6m^4+6m^2)+m^3+3m^5\)

\(\Leftrightarrow y'=(x+m)^2(4x+3m^3+m)\)

Để \(y'>0\Rightarrow 4x+3m^3+m>0\)

\(\Leftrightarrow 3m^3+m>-4x\)

Vì hàm đồng biến với mọi \(x\in (-\infty, +\infty)\) nên điều trên xảy ra khi \(3m^3+m>(-4x)_{\max}\)

Hiển nhiên \(-4x\) với \(x\in R\) thì không tồn tại max.

Do đó đề bài có vấn đề.

25 tháng 5 2017

25 tháng 4 2018

Hàm số y = ax + b ( a ≠ 0 )  đồng biến trên R khi a> 0.

Do đó, để hàm số đã cho đồng biến trên R thì  m 2 - 1 > 0 ⇔ [ m > 1 m < - 1

Chọn C.

NV
24 tháng 3 2021

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

10 tháng 4 2018

Chọn D

11 tháng 5 2018

Đáp án D

17 tháng 12 2017

Đáp án B

Từ bảng xét dấu f'(x) ta thấy trên khoảng  ( - ∞ ; - 1 )   thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng  ( - ∞ ; - 1 )  

10 tháng 12 2018

Câu 1 : 3h 59 phút

Câu 2 : A sẽ thi cầu lông và quê ở Quãng Ngãi

Theo mình biết là vậy.Câu hỏi này là hồi thứ bảy ngày 8/12 đúng không mình có xem mà quên rồi.Câu hỏi này là của cuộc thi Quý.Người dc đi tiếp là Thế Trung,Hoàng Minh sắp dc đi tiếp mà trả lời câu hỏi sai nên thật đáng tiếc....Ai ở trường quay đều vỡ ào.

mình nha 

10 tháng 12 2018

Trả lời :

Câu 1 : 3 giờ 59 phút

Câu 2 :  B quê ở Quảng Ngãi và sẽ thi môn Cầu Lông !

# Hoc tot #

16 tháng 5 2017

Chọn B

5 tháng 12 2016

Chú ý ; Hàm số có dạng y = ax + b (a khác 0) đồng biến khi a > 0 , nghịch biến khi a < 0

Vậy : 

a/ Hàm số đồng biến khi 2m-3 > 0 => m > 3/2

b/ Hàm số nghịch biến khi 2m-3 < 0 => m < 3/2