Cho tam giác ABC có AB=AC=13 cm; BC=10cm.tính tan B?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý AM là đường cao, từ đó dùng Định lý Pytago tính được AM = 12 cm.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
a) Xét tam giác ABC có:
\(AB^2+AC^2=5^2+12^2=169cm.\)
\(BC^2=13^2=169cm.\)
\(\Rightarrow AB^2+AC^2=BC^2\).
\(\Rightarrow\) Tam giác ABC vuông tại A (Định lý Pytago đảo).
\(\Rightarrow\widehat{BAC}=90^o.\)
Xét tam giác ACD có:
\(AD^2+AC^2=16^2+12^2=400cm.\)
\(CD^2=20^2=400cm.\)
\(\Rightarrow AD^2+AC^2=CD^2.\)
\(\Rightarrow\) Tam giác ADC vuông tại A (Định lý Pytago đảo).
\(\Rightarrow\widehat{CAD}=90^o.\)
Ta có: \(\widehat{CAD}+\widehat{BAC}=90^o+90^o=180^o.\)
\(\Rightarrow\) B,A,D thẳng hàng
a, Ta có: AD + BD = AB => AD + 2 = 8 => AD = 6 (cm)
và AE + EC = AC => AE + 13 = 16 => AE = 3 (cm)
Xét △AEB và △ADC
Có: \(\frac{AE}{AD}=\frac{AB}{AC}\) \(\left(=\frac{3}{6}=\frac{8}{16}=\frac{1}{2}\right)\)(cm)
∠BAE là góc chung
=> △AEB ᔕ △ADC (c.g.c)
b, Ta có: \(\frac{AE}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\)
Xét △ADE và △ACB
Có: \(\frac{AE}{AB}=\frac{AD}{AC}\)
∠DAE là góc chung
=> △ADE ᔕ △ACB (c.g.c)
=> ∠AED = ∠ABC
c, Ta có: \(\frac{AE}{AB}=\frac{AD}{AC}\) => AE . AC = AD . AB
Bạn cần làm xuất hiện tam giác vuông bằng cách kẻ đường cao AH là xong.