K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

Xét PT hoành độ giao điểm của hai đths:

\(\frac{1}{4}x^2-\left(\frac{-1}{2}x+2\right)=0\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow (x-2)(x+4)=0\Leftrightarrow x=2, x=-4\)

Vậy giao điểm của hai đồ thị hàm số là \(A(2,1); B(-4; 4)\)

Từ đây ta có:

\(AB=\sqrt{(2--4)^2+(1-4)^2}=3\sqrt{5}\)

\(OA=\sqrt{2^2+1^2}=\sqrt{5}\)

\(OB=\sqrt{(-4)^2+4^2}=4\sqrt{2}\)

Áp dụng công thức Herong về tính diện tích tam giác.

Tam giác có 3 cạnh tương ứng bằng $a,b,c$. $p$ là nửa chu vi thì :

\(S=\sqrt{p(p-a)(p-b)(p-c)}\)

Áp dụng công thức trên ta có:

\(S_{OAB}=6\) (đơn vị diện tích)

13 tháng 5 2018

Hay haHoàng Nghĩa Đức

29 tháng 10 2023

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330

8 tháng 9 2023

Các đơn thức là :

\(\left(1-\dfrac{1}{\sqrt[]{3}}\right)x^2;x^2.\dfrac{7}{2}\)

NV
5 tháng 8 2021

\(x^2-\left(y+1\right)x+y^2-y=0\)

\(\Leftrightarrow x^2-\left(y+1\right)x+\dfrac{1}{4}\left(y+1\right)^2-\dfrac{1}{4}\left(y+1\right)^2+y^2-y=0\)

\(\Leftrightarrow\left(x-\dfrac{y+1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-1=0\)

\(\Leftrightarrow\dfrac{3}{4}\left(y-1\right)^2-1=-\left(x-\dfrac{y+1}{2}\right)^2\le0\)

\(\Rightarrow\dfrac{3}{4}\left(y-1\right)^2\le1\)

\(\Rightarrow\left(y-1\right)^2\le\dfrac{4}{3}\)

25 tháng 8 2021

chắc đề cho x,y chứ x+y=6,x-y=4,xy=5

(làm ra bạn tự thay số vào tính)

a,\(=>A=\left(x+y\right)^2-2xy=.....\)

b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)

c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)

d,\(=>D=\dfrac{x+y}{xy}=.....\)

e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)

25 tháng 8 2021

thanks

 

22 tháng 5 2021

pt hoành độ giao điểm \(x^2=mx+4< =>x^2-mx-4=0\)

\(\Delta=\left(-m\right)^2-4\left(-4\right)=m^2+16>0\left(\forall m\right)\)

vậy (P) và (d) cắt nhau tại 2 điểm phân biệt có tọa độ (x1;mx1+4), (x2;mx2+4)

theo vi ét => \(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-4\end{matrix}\right.\)

=>\(\dfrac{1}{y1}+\dfrac{1}{y2}=5< =>\dfrac{y1+y2}{y1.y2}=5\)

\(\dfrac{mx1+4+mx2+4}{\left(mx1+4\right)\left(mx2+4\right)}=\dfrac{m\left(x1+x2\right)+8}{m^2.x1.x2+4mx1+4mx2+16}=5\)

<=>\(\dfrac{m^2+8}{-4.m^2+4m^2+16}=5< =>\dfrac{m^2+8}{16}=5\)

\(=>m^2+8=80< =>m^2=72=>\left[{}\begin{matrix}m=\sqrt{72}=6\sqrt{2}\\m=-\sqrt{72}=-6\sqrt{2}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}m=6\sqrt{2}\\m=-6\sqrt{2}\end{matrix}\right.\) thì (P) và (d) cắt nhau tại 2 điểm có tung độ y1,y2 thỏa mãn \(\dfrac{1}{y1}+\dfrac{1}{y2}=5\)

7 tháng 12 2018

\(\dfrac{\left(x+y\right)2}{x2+xy}+\dfrac{\left(x-y\right)2}{x2-xy}=-\left(\dfrac{\left(x-y\right)2}{x2-xy}\right)+\dfrac{\left(x-y\right)2}{x2-xy}=0\)

24 tháng 11 2022

b: \(\dfrac{x^2-4x}{xy-4x-3y+12}+\dfrac{x-2}{y-4}\)

\(=\dfrac{x\left(x-4\right)}{\left(y-4\right)\left(x-3\right)}+\dfrac{x-2}{y-4}\)

\(=\dfrac{x^2-4x+x^2-5x+6}{\left(y-4\right)\left(x-3\right)}=\dfrac{2x^2-9x+6}{\left(y-4\right)\left(x-3\right)}\)

c: \(=\dfrac{y^2}{\left(y-5\right)\left(x+1\right)}+\dfrac{2}{x+1}\)

\(=\dfrac{y^2+2y-10}{\left(y-5\right)\left(x+1\right)}\)

a: Ta có: \(x^2\ge0\forall x\)

\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)

Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)