Chứng minh rằng : Nếu (a, c) = 1; (b, c) = 1 thì (a.b, c) = 1
Giúp nhanhhhhhhhhhhhhhh... !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
abc=11(a+b+c)
=>100a+10b+c=11a+11b+11c
=> 89a=b+10c
Vì b+10c≤99=) 89a≤99
=> a=1
=> 89=b+10c
=> b=89−10c
Để b không âm và có 1 chữ số => c = 8
=> b=89−80=9
Vậy nếu abc=11(a+b+c) thì a = 1, b = 9, c = 8 (Đpcm)
P/s tham khảo nha