K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b =  - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow  - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow  - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(u = a - b;v = a + b\).

Suy ra \(u + v = 2a \to a = \frac{{u + v}}{2}\)

\(u - v = 2b \to b = \frac{{u - v}}{2}\)

Ta có: \(\cos u + \cos v = 2\cos \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\)

\(\cos u - \cos v =  - 2\sin \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\)

\(\sin u + \sin v = 2\sin \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\)

\(\sin u - \sin v = 2\cos \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\)

12 tháng 1 2017

a) Các hằng đẳng thức lượng giác cơ bản:

sin2α + cos2α = 1

1 + tan2α = 1/(cos2α); α ≠ π/2 + kπ, k ∈ Z

1 + cot2α = 1/(sin2α); α ≠ kπ, k ∈ Z

tan⁡α.cot⁡α = 1; α ≠ kπ/2, k ∈ Z

b) Công thức cộng:

cos⁡(a - b) = cos⁡a cos⁡b + sin⁡a sin⁡b

cos⁡(a + b) = cos⁡a cos⁡b - sin⁡a sin⁡b

sin⁡(a - b) = sin⁡a cos⁡b - cos⁡a sin⁡b

sin(a + b) = sina.cosb + cosa.sinb

Giải bài tập Toán 11 | Giải Toán lớp 11

c) Công thức nhân đôi:

sin⁡2α = 2 sin⁡α cos⁡α

cos⁡2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α

Giải bài tập Toán 11 | Giải Toán lớp 11

d) Công thức biến đổi tích thành tổng:

cos⁡ a cos⁡b = 1/2 [cos⁡(a - b) + cos⁡(a + b) ]

sin⁡a sin⁡b = 1/2 [cos⁡(a - b) - cos⁡(a + b) ]

sin⁡a cos⁡b = 1/2 [sin⁡(a - b) + sin⁡(a + b) ]

Công thức biến đổi tổng thành tích:

Giải bài tập Toán 11 | Giải Toán lớp 11

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

\(\begin{array}{l}\cos \alpha \cos \beta  = \cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right) + \cos \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \alpha  + \cos \beta } \right)\end{array}\)

\(\begin{array}{l}\sin \alpha \sin \beta  = \sin \frac{{\alpha  + \beta }}{2}\sin \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right) - \cos \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \beta  - \cos \alpha } \right)\end{array}\)

\(\begin{array}{l}\sin \alpha \cos \beta  = \sin \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\sin \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right) + \sin \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\sin \alpha  + \sin \beta } \right)\end{array}\)

27 tháng 11 2017

Đáp án C

13 tháng 6 2018

Chọn C