\(A=\frac{2000}{200}+\frac{2001}{2002}\)\(;\)\(B=\frac{2000+2001}{2001+2002}\)
Quy đồng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì:\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
Ta có:
B = \(\frac{2000}{2001+2002}\)+ \(\frac{2001}{2001+2002}\)
Vì \(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)
=> \(\left(\frac{2000}{2001}+\frac{2001}{2002}\right)\)> \(\left(\frac{2000}{2001+2002}+\frac{2001}{2001+2001}\right)\)
=> A>B
Vậy A>B
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
B=2000/2001+2002 + 2001/2001+2002
Ta có:2000/2001 > 2000/2001+2002
2001/2002 > 2001/2001+2002
Vậy A >B
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)
Ta xét các phân số trong 2 biểu thức đều bằng nhau :
2000 = 2000 ; 2001 = 2001 ; 2002 = 2002.
Vậy A = B.
Ta có:
B=\(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Do \(\frac{2000}{2001}>\frac{2000}{2001+2002};\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có:$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:$\frac{2000}{2001}>\frac{2000}{2001+2002}$20002001 >20002001+2002
$\frac{2001}{2002}>\frac{2001}{2001+2002}$20012002 >20012001+2002
$\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)$⇒(20002001 +20012002 )>(20002001−2002 −20012001+2001 )
$\Rightarrow A>B$⇒A>B
Ta có \(B=\frac{2000}{4003}+\frac{2001}{4003}\)
Vì \(\frac{2000}{4003}< \frac{2000}{2001},\frac{2001}{4003}< \frac{2001}{2002}\) nên ta suy ra A<B