cho f(x) là hàm số liên tục trên R;\(\int\limits^2_0f\left(x\right)dx=-5,\int\limits^3_1f\left(2x\right)dx=10\) tính giá trị của \(\int\limits^2_0f\left(3x\right)dx\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
11 tháng 3 2022
Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)
Đạo hàm 2 vế:
\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)
\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)
Xét \(I=\int f'\left(x\right)e^{2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)
\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)
\(=\left(1-x\right)e^x+C\)
CM
14 tháng 11 2018
Chọn A
.
Nhân 2 vế của với ta được .
Hay .
Xét .
Đặt .
Suy ra .
Theo giả thiết nên
.
Lời giải:
Ta có : \(10=\int ^{3}_{1}f(2x)dx=\frac{1}{2}\int ^{3}_{1}f(2x)d(2x)=\frac{1}{2}\int ^{6}_{2}f(x)dx\)
\(\Rightarrow \int ^{6}_{2}f(x)d(x)=20\)
Mà \(\int ^{2}_{0}f(x)dx=-5\Rightarrow \int ^{6}_{0}f(x)dx=15\)
Do đó mà \(\int ^{2}_{0}f(3x)dx=\frac{1}{3}\int ^{2}_{0}f(3x)d(3x)=\frac{1}{3}\int ^{6}_{0}f(x)dx=5\)