\(\frac{x}{4}\)=\(\frac{y}{6}\);\(\frac{y}{6}\)= \(\frac{z}{8}\) và 5x - 3y - 3z = -536
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))
Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)
\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)
\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
với x,y,z >0 áp dụng bđt cosi ta có:
\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)
\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)
\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)
\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)
với x,y,z>0 áp dụng bđt cosi ta có:
\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)
\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)
\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)
\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)
\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)
dấu = xảy ra khi x=y=z=1
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
a) Thay x=6-y
ta có: \(\frac{6-y+3}{y+5}=\frac{3-y}{y+5}=\frac{3}{5}\)
\(\Rightarrow\left(3-y\right).5=\left(y+5\right).3\)
15 - 5y= 3y + 15
-5y-3y=15-15
-8y=0
y=0
Vậy x=6
b) Thay x= y-4
ta có: \(\frac{y-4-7}{y-6}=\frac{y-11}{y-6}=\frac{7}{6}\)
\(\Rightarrow\left(y-11\right).6=\left(y-6\right).7\)
6y-66 = 7y -42
-y=24
y=-24
Vậy x=-4+-24=-28
\(\frac{x+3}{y+5}=\frac{3}{5}\\ \Leftrightarrow5\left(x+3\right)=3\left(y+5\right)\\ \Leftrightarrow5x+15=3y+15\\ \Leftrightarrow5x=3y\\ M\text{à};x+y=6\Rightarrow x=6-y\\ \Rightarrow5\left(6-y\right)=3y\\ \Leftrightarrow30-5y=3y\\ \Rightarrow30=8y\\ \Rightarrow y=\frac{30}{8}\\ \)
\(\frac{x-7}{y-6}=\frac{7}{6}\\ \Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\\ \Leftrightarrow6x-42=7y-42\\ \Leftrightarrow6x=7y\\ M\text{à}x-y=-4;\Rightarrow x=-4+y\\ \Rightarrow6\left(-4+y\right)=7y\\ \Rightarrow-24+6y=7y\\ \Rightarrow y=-24\\ \)
Từ y bạn từ tìm x nhé!!!
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
Ta có: \(\frac{x}{4}\)= \(\frac{y}{6}\)
\(\frac{y}{6}\)= \(\frac{z}{8}\)
=> \(\frac{x}{4}\)= \(\frac{y}{6}\)= \(\frac{z}{8}\)=> \(\frac{5x}{20}\)= \(\frac{3y}{18}\)= \(\frac{3z}{24}\)
Áp dụng tính chất dãy tỉ số = nhau
Ta có: \(\frac{5x}{20}\)= \(\frac{3y}{18}\)= \(\frac{3z}{24}\)= \(\frac{5x-3y-3z}{20-18-24}\)= \(\frac{-536}{-26}\)= \(\frac{268}{13}\)
Vậy x = \(\frac{1072}{13}\)
y = \(\frac{1608}{13}\)
z = \(\frac{2144}{13}\)
Ta có: \(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{8}.\)
=> \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{5x}{20}=\frac{3y}{18}=\frac{3z}{24}\) và \(5x-3y-3z=-536.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5x}{20}=\frac{3y}{18}=\frac{3z}{24}=\frac{5x-3y-3z}{20-18-24}=\frac{-536}{-22}=\frac{268}{11}.\)
\(\left\{{}\begin{matrix}\frac{x}{4}=\frac{268}{11}=>x=\frac{268}{11}.4=\frac{1072}{11}\\\frac{y}{6}=\frac{268}{11}=>y=\frac{268}{11}.6=\frac{1608}{11}\\\frac{z}{8}=\frac{268}{11}=>z=\frac{268}{11}.8=\frac{2144}{11}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\frac{1072}{11};\frac{1608}{11};\frac{2144}{11}\right).\)
Chúc bạn học tốt!