Tìm x và y biết :
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\);\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x+y-z=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
a) \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :
\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)
\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)
\( \Rightarrow 30.2 = x.5\)
\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\) ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )
Vậy x = 12 y = 18
b) Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)
Mà theo đề bài x – y = -21
Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} = - 3\) \( = \dfrac{x}{5}\)
\( \Rightarrow \)x = (-3).5
\( \Rightarrow \)x = -15
Thay x bằng -15 ta có -15 – y = -21
\( \Rightarrow \)y = -15 + 21
\( \Rightarrow \)y = 6
Vậy x = -15 và y = 6
\(\dfrac{x}{-2}=\dfrac{y}{3}\)
=>\(\dfrac{x}{-4}=\dfrac{y}{6}\)
mà \(\dfrac{y}{6}=\dfrac{z}{2}\)
nên \(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}\)
mà x+y+z=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}=\dfrac{x+y+z}{-4+6+2}=\dfrac{28}{4}=7\)
=>\(x=-4\cdot7=-28;y=6\cdot7=42;z=2\cdot7=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)
Do đó: x=10; y=15; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
Ta có:
`x/10=y/5 -> x/20=y/10` `(1)`
`y/2=z/3 -> y/10=z/15` `(2)`
Từ `(1)` và `(2)`
`-> x/20=y/10=z/15` `-> x/20=y/10=(4z)/60`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/20=y/10=(4z)/60=(x+4z)/(20+60)=320/80=4`
`-> x/20=y/10=z/15=4`
`-> x=20*4=80, y=10*4=40, z=15*4=60`.
Ta có:
\(\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}\\\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\end{matrix}\right.\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}=\dfrac{x+4z}{20+4.15}=\dfrac{320}{80}=4\)
Do đó:
\(\dfrac{x}{20}=4\Rightarrow x=80\)
\(\dfrac{y}{10}=4\Rightarrow y=40\)
\(\dfrac{z}{15}=4\Rightarrow z=60\)
\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=12.2=24\\z=15.2=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow y=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt