\(\left\{\begin{matrix}\left(m+1\right)x-my=3m-1\\2x-y=m+1\end{matrix}\right.\)
tìm m để hệ có nghiệm (x;) sao cho s=x^2+y^2 đạt gtnn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(m-1\ne2m\)
=>\(m\ne-1\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2=24\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)
=>\(m^2+2m+1-m^2+6m-9=24\)
=>8m-8=24
=>m=4(nhận)
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(2m\ne m-1\)
=>\(m\ne-1\)(1)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m-1\right)-2mx+m^2+5m-3m+1=0\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(-m-1\right)+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-m-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2< 4\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)
=>\(m^2+2m+1-m^2+6m-9< 4\)
=>8m-8<4
=>8m<12
=>\(m< \dfrac{3}{2}\)
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)
=>\(2m\ne m-1\)
=>\(m\ne-1\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1\right)-2mx+m^2+5m=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1=-m^2-2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-\left(m+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)
\(x^2-y^2< 4\)
=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)
=>\(m^2+2m+1-m^2+6m-9< 4\)
=>8m-8<4
=>8m<12
=>\(m< \dfrac{3}{2}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)
Hệ đã cho vô nghiệm khi:
\(\dfrac{1}{2}=\dfrac{m}{3m-1}\ne\dfrac{6}{3}\)
\(\Rightarrow3m-1=2m\)
\(\Rightarrow m=1\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=\left(m+1\right)^2\end{matrix}\right.\)
Pt có nghiệm duy nhất \(\Leftrightarrow m\ne-1\)
Khi đó: \(\left\{{}\begin{matrix}x=m+1\\y=m-3\end{matrix}\right.\)
\(x^2-y^2=4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2=4\)
\(\Leftrightarrow8m=12\Rightarrow m=\dfrac{3}{2}\)
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\\dfrac{3m-1-y}{2}-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\3m-1-y-4y=-2m-6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\5y=5m+5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-m-1}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Vậy hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Ta có: y = x2 \(\Leftrightarrow\) m + 1 = (m - 1)2 \(\Leftrightarrow\) m + 1 = m2 - 2m + 1
\(\Leftrightarrow\) m2 - 3m = 0
\(\Leftrightarrow\) m(m - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
Vậy m = 0; m = 3 thì hpt trên có nghiệm duy nhất và thỏa mãn y = x2
Chúc bn học tốt!
Lời giải:
Nhân PT (2) với $m$ và trừ hai phương trình cho nhau:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} (m+1)x-my=3m-1\\ 2xm-ym=m^2+m\end{matrix}\right.\Rightarrow mx-x=m^2-2m+1\)
\(\Rightarrow x=m-1\). Thay vào bất kỳ phương trình nào suy ra \(y=m-3\)
Do đó \(x^2+y^2=(m-1)^2+(m-3)^2=2m^2-8m+10=2(m-2)^2+2\)
\(\Rightarrow x^2+y^2\geq 2\Leftrightarrow m=2\)
Vậy HPT có nghiệm thỏa mãn \((x^2+y^2)_{\min}\Leftrightarrow m=2\)
m =0 có nghiệm x=-1 và y=-3
=> nhân với số 0 hệ sy biến mất kiểm soát
Giải:
Từ (2) thế y=2x-m-1 vào (1)
\(\left(m+1\right)x-m\left(2x-m-1\right)=3m-1\)
\(\left(1-m\right)x+m^2+m=3m-1\Leftrightarrow\left(m-1\right)x=m^2-2m+1=\left(m-1\right)^2\)
\(\left\{\begin{matrix}y=\left(2x-\left(m+1\right)\right)\left(3\right)\\\left(m-1\right)x=\left(m-1\right)^2\left(4\right)\end{matrix}\right.\)
Với m=1 (4) <=> 0x=1 => vô N0 với x
Với m khác 1 (*)
\(\left\{\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)\(\Rightarrow x^2+y^2=\left(m-1\right)^2+\left(m-3\right)^2=\left(m^2-2m+1\right)+\left(m^2-6m+9\right)=2\left(m^2-4m+5\right)=2\left[\left(m-2\right)^2+1\right]\)
\(S=x^2+y^2=2\left[\left(m-2\right)^2+1\right]\ge2\) đẳng thức khi m=2 thỏa mãn đk (*)
Đáp số: m=2