K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = 0\) với \(\alpha  = {0^o}\) và \(\alpha  = {180^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  = 1\) với \(\alpha  = {45^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha \) không xác định với \(\alpha  = {0^o}\) hoặc \(\alpha  = {180^o}\) 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vì \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1\) nên \({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( { - \frac{4}{5}} \right)^2} = \frac{9}{{25}}\)

Do \(\pi  < \alpha  < \frac{{3\pi }}{2}\) nên \(\cos \alpha  < 0\). Suy ra \(\cos \alpha  =  - \frac{3}{5}\)

Ax//By

=>góc yBA+góc xAB=180 độ(hai góc trong cùng phía)

=>\(a+\dfrac{7}{2}a=180\)

=>9/2a=180

=>a=40

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\cos \alpha  =  - 0,75\)

\( \Leftrightarrow \alpha  ={138^ \circ }35'36''\) hay \(\alpha  =2,4188584\) rad

b) \(\tan \alpha  =  2,46\)

\( \Leftrightarrow \alpha  ={67^ \circ }52'01''\) hay \(\alpha  =1,1846956\) rad

c) \(\cot \alpha  =  -6,18\)

\( \Leftrightarrow \alpha  ={ -9^ \circ }11'30''\) hay \(\alpha  = -0,1604\) rad

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = \frac{{\sqrt 3 }}{2}\) với \(\alpha  = {60^o}\) và \(\alpha  = {120^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  =  - 1\) với \(\alpha  = {135^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha  =  - \sqrt 3 \) với \(\alpha  = {150^o}\)

25 tháng 9 2023

Tham khảo:

Gọi M là điểm thuộc nửa đường tròn đơn vị sao cho: \(\widehat {xOM} = \alpha \)

Do \(\sin \alpha  = \frac{1}{2}\) nên tung độ của M bằng \(\frac{1}{2}.\)

Vậy ta xác định được hai điểm N và M thỏa mãn \(\sin \widehat {xON} = \sin \widehat {xOM} = \frac{1}{2}\)

Đặt \(\beta  = \widehat {xOM} \Rightarrow \widehat {xON} = {180^o} - \beta \)

Xét tam giác OHM vuông tại H ta có: \(MH = \frac{1}{2} = \frac{{OM}}{2} \Rightarrow \beta  = {30^o}\)

\( \Rightarrow \widehat {xON} = {180^o} - {30^o} = {150^o}\)

Vậy \(\alpha  = {30^o}\) hoặc \(\alpha  = {150^o}\)

28 tháng 8 2020

\(Ta\)\(có\)\(:\)

\(tana\)\(=\frac{HM}{AH}\)

\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)

\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)

\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)

NM
12 tháng 11 2020

\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)

\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)

\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)

dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)