K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

\(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)

ĐKXĐ:

 \(x+y-4\ge0\rightarrow x+y\ge4\rightarrow x+y\ge4\)

\(x-y+4\ge0\rightarrow x-y\ge-4\rightarrow x-y\ge-4\)

\(-x+y+4\ge0\rightarrow-x+y\ge-4\rightarrow x-y\le4\)

\(x\ge0\)

\(y\ge0\)

Với \(a;b\ge0\) ta có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\)

\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)

Đẳng thức xảy ra khi \(a=b\)

Áp dụng bất đẳng thức trên, ta có:

\(\hept{\begin{cases}\sqrt{x+y-4}+\sqrt{x-y+4}\le\sqrt{2\left(x+y-4+x-y+4\right)}=2\sqrt{x}\\\sqrt{x+y-4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x+y-4\right)+\left(-x+y+4\right)]}=2\sqrt{y}\\\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x-y+4\right)+\left(-x+y+4\right)}=4\end{cases}}\)

\(\rightarrow2\sqrt{x+y-4}+2\sqrt{x-y+4}+2\sqrt{-x+y+4}\le2\sqrt{x}+2\sqrt{y}+4\)

\(\rightarrow\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{x}+\sqrt{y}+2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y-4=x-y+4\\x+y-4=-x+y+4\\x-y+4=-x+y+4\end{cases}}\Leftrightarrow x=y=4\) (Thoả mãn)

7 tháng 1 2022

\(x\ne1;x\ge0\)

\(A=x+2\) 

\(mincủaA=2khix=0\)

are you sad? 🥺🥺🥺

5 tháng 1 2022

He wondered how he could solve that problem.

4 tháng 1 2022

Điều kiện \(x+y\ge0\) và \(x\ge y\)

Xét phương trình thứ hai: \(\sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\)\(\Leftrightarrow\frac{1}{2}\sqrt{\frac{x+y}{2}}-\frac{1}{2}\sqrt{\frac{x-y}{3}}=3\)

\(\Leftrightarrow\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\)

Như vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}}\)(*)

Đặt \(\sqrt{\frac{x+y}{2}}=a\left(a\ge0\right)\)và \(\sqrt{\frac{x-y}{3}}=b\left(b\ge0\right)\), khi đó 

(*) \(\Leftrightarrow\hept{\begin{cases}a+b=14\\a-b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=20\\b=a-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=10\\b=10-6=4\end{cases}}\)(nhận)

Vậy \(\sqrt{\frac{x+y}{2}}=10\)\(\Leftrightarrow\frac{x+y}{2}=100\)\(\Leftrightarrow x+y=200\)

và \(\sqrt{\frac{x-y}{3}}=4\)\(\Leftrightarrow\frac{x-y}{3}=16\)\(\Leftrightarrow x-y=48\)

Vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}x+y=200\\x-y=48\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=248\\y=x-48\end{cases}}\Leftrightarrow\hept{\begin{cases}x=124\\y=124-48=76\end{cases}}\)(nhận)'

Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left(124;76\right)\)

4 tháng 1 2022

undefinedundefinedundefinedKhi nào rảnh vào kênh H-EDITOR đăng kí   nha!!! Thanks!

              

4 tháng 1 2022
Thông thường, với các loại rau củ thường sẽ bỏ vỏ trước khi ăn. Tuy nhiên, với dưa chuột hay dưa leo thì ngược lại, bởi vì hầu hết dưỡng chất của dưa chuột đều nằm ở phần vỏ và hạt, hơn nữa vỏ còn làm tăng độ giòn, ngon của dưa chuột.
4 tháng 1 2022

\(f\left(x\right)=\dfrac{12\left(x^2+5,76\right)}{4\sqrt{x^2+3,24}.3\sqrt{x^2+10,24}}=\dfrac{12\left(x^2+5,76\right)}{\sqrt{16x^2+51,84}.\sqrt{9x^2+92,16}}\)

\(f\left(x\right)\ge\dfrac{24\left(x^2+5,76\right)}{16x^2+51,84+9x^2+92,16}=\dfrac{24\left(x^2+5,76\right)}{25\left(x^2+5,76\right)}=\dfrac{24}{25}\)

\(f\left(x\right)_{min}=\dfrac{24}{25}\) khi \(16x^2+51,84=9x^2+92,16\Leftrightarrow x^2=\dfrac{144}{25}\)

4 tháng 1 2022

TL :

2,4 m nhé

Sợ duyệt

HR

@@@@@@@