Chọ hỏi vào toán tập 2 ở đâu ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là đỉnh hình chóp và BC là 1 cạnh đáy (BC = 2,2m) tạo thành tam giác ABC cân tại A, AH là đường cao kẻ từ A xuống BC (H thuộc BC và AH = 2,8m)
=> AH đồng thời là đường trung trực của BC
=> H là trung điểm BC => BH = BC/2 = 2,2/2 = 1,1 (m)
Xét tam giác ABH vuông tại H (AH vuông góc với BC)
=> AB = \(\sqrt{BH^2+AH^2}\) = \(\sqrt{1,1^2+2,8^2}\) = 6,5 (m)
Vậy độ dài cạnh bên khoảng 6,5 m
\(\left(x-2\right)\left(x-3\right)-2x\left(1-x\right)\)
\(=x^2-3x-2x+6-2x+2x^2\)
\(=x^2-5x+6-2x+2x^2\)
\(=3x^2-7x+6\)
_______________
\(\left(x+5\right)^2-\left(x+3\right)\left(x-2\right)\)
\(=\left(x^2+10x+25\right)-\left(x^2-2x+3x-6\right)\)
\(=x^2+10x+25-x^2-x+6\)
\(=9x+31\)
\(a,5x^3y-10x^2y^2\\=5x^2y(x-2y)\\b,x^4-y^4\\=(x^2)^2-(y^2)^2\\=(x^2-y^2)(x^2+y^2)\\=(x-y)(x+y)(x^2+y^2)\)
\(c,(x+5)^2-16\\=(x+5)^2-4^2\\=(x+5-4)(x+5+4)\\=(x+1)(x+9)\\d,7x(y-3)-14(3-y)\\=7x(y-3)+14(y-3)\\=(7x+14)(y-3)\\=7(x+2)(y-3)\\Toru\)
Lời giải:
Để $10x^3-2x^4\vdots \frac{3}{7}x^n$ thì $n\leq 3$
Mà $n$ là số tự nhiên nên $\Rightarrow n\in \left\{0; 1; 2;3\right\}$
Vậy có 4 giá trị $n$ thỏa mãn.
Lời giải:
$4n^3-4n^2-n+4=2n^2(2n-1)-n(2n-1)-(2n-1)+3$
$=(2n-1)(2n^2-n-1)+3$
Do đó để $4n^3-4n^2-n+4\vdots 2n-1$ thì:
$3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1; -1;3;-3\right\}$
$\Rightarrow n\in \left\{1; 0; 2; -1\right\}$
Mà $n$ là số nguyên dương nên $n\in \left\{1;2\right\}$
bạn vào toán bình thường r kéo xuống khi đến bài đầu tiên của kì 2