K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

\(P=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\) 

Ta có: \(xyz=1\Rightarrow x=\dfrac{1}{yz}\) 

\(P=\left(\dfrac{1}{yz}+yz\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(yz+\dfrac{1}{yz}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+2+1y^2z^2+y^2+2+\dfrac{1}{y^2}+z^2+2+\dfrac{1}{z^2}-\left(y^2z+z+\dfrac{1}{z}+\dfrac{1}{y^2z}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+y^2z^2+y^2+\dfrac{1}{y^2}+z^2+\dfrac{1}{z^2}+6-y^2z^2-y^2-z^2-1-1-\dfrac{1}{z^2}-\dfrac{1}{y^2}-\dfrac{1}{y^2z^2}\)\(P=\left(\dfrac{1}{y^2z^2}-\dfrac{1}{y^2z^2}\right)+\left(y^2z^2-y^2z^2\right)+\left(y^2-y^2\right)+\left(z^2-z^2\right)+\left(\dfrac{1}{y^2}-\dfrac{1}{y^2}\right)+\left(\dfrac{1}{z^2}-\dfrac{1}{z^2}\right)+4\)

\(P=4\)

Vậy: ... 

23 tháng 11 2023

a) \(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+10x+4}{x}\left(x\ne0;x\ne-2\right)\)

\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{\left(x+2\right)-x^2}{x+2}-\dfrac{x^2+10x+4}{x}\)

\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{-x^2+x+2}{x+2}-\dfrac{x^2+10x+4}{x}\)

\(Q=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)}{x}-\dfrac{x^2+10x+4}{x}\)

\(Q=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-10x-4}{x}\)

\(Q=\dfrac{-x^3-2x^2-6x}{x}\)

\(Q=\dfrac{x\left(-x^2-2x-6\right)}{x}\)

\(Q=-x^2-2x-6\)

b) Ta có:

\(Q=-x^2-2x-6\)

\(Q=-\left(x^2+2x+6\right)\)

\(Q=-\left[\left(x^2+2x+1\right)+5\right]\)

\(Q=-\left(x+1\right)^2-5\)

Mà: \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow Q=-\left(x+1\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi:

\(x+1=0\Rightarrow x=-1\)

Vậy: \(Q_{max}=-5\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:
BĐT cần chứng minh tương đương với:

$18a^2+3b^2+7c^2+18-16ac+6bc-12a\geq 0$

$\Leftrightarrow (16a^2-16ac+4c^2)+3(b^2+2bc+c^2)+2(a^2-6a+9)\geq 0$

$\Leftrightarrow (4a-2c)^2+3(b+c)^2+2(a-3)^2\geq 0$

(luôn đúng với mọi $a,b,c$ thực)

Do đó ta có đpcm.

22 tháng 11 2023

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

20 tháng 11 2023

Có:

\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

Thay \(a=b=c\) vào \(A\), ta được:

\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)

\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)

\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)

\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)

\(=\dfrac{3}{2017^2}\)

Vậy: ...

19 tháng 11 2023

Ta có a: 6 dư 5
=> a= 6k+5 với k ϵ N
có: a2 = (6k+5)2 = 36k2+ 60k+25
vì 36k2⋮6 ; 60k⋮6 ; 25 : 6 dư 1
=> a2 chia 6 dư 1 
 

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:

Vì $a$ chia $6$ dư $5$ nên đặt $a=6k+5$ với $k$ nguyên. 

Khi đó: $a^2=(6k+5)^2=36k^2+25+60k=6(6k^2+10k+4)+1$ chia $6$ dư $1$

17 tháng 11 2023

\(x\) + 2y = 8

\(2y\)        = 8 - \(x\)

 y        = \(\dfrac{8-x}{2}\)

  y =  - \(\dfrac{x}{2}\) + 4

Thay y = - \(\dfrac{x}{2}\) + 4 vào biểu thức B = \(xy\) ta có: 

B = \(x\).(-\(\dfrac{x}{2}\) + 4)

B = - \(\dfrac{x^2}{2}\) + 4\(x\)

B = -\(\dfrac{1}{2}\). (\(x^2\)  - 8\(x\)  + 16)  +  8 

B = - \(\dfrac{1}{2}\).(\(x\) - 4)2 + 8

Vì  \(\dfrac{1}{2}\).(\(x\) - 4)2 ≥ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\) - 4)2 ≤ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\)  - 4)2 + 8 ≤ 8

Dấu bằng xảy ra khi:  \(x\) - 4 = 0 ⇒ \(x\) = 4; thay \(x\) = 4 vào biểu thức:

y = - \(\dfrac{1}{2}\) \(x\)+ 4 ta có y = - \(\dfrac{4}{2}\) + 4 = 2

Vậy giá trị lớn nhất của B là 8 xảy ra khi \(x\) = 4; y = 2

 

 

 

17 tháng 11 2023

a) Do \(MH\perp AC\left(gt\right)\)

\(\Rightarrow\widehat{MHA}=90^0\)

Do \(MK\perp AB\left(gt\right)\)

\(\Rightarrow\widehat{MKA}=90^0\)

Do \(\Delta ABC\) vuông tại A

\(\Rightarrow\widehat{CAB}=90^0\)

\(\Rightarrow\widehat{HAK}=90^0\)

Tứ giác \(AKMH\) có:

\(\widehat{MHA}=\widehat{HAK}=\widehat{MKA}=90^0\)

\(\Rightarrow AKMH\) là hình chữ nhật

b) Do \(MK\perp AB\left(cmt\right)\)

Mà \(AB\perp AC\) (\(\Delta ABC\) vuông tại A)

\(\Rightarrow MK\) // \(AC\)

Mà \(M\) là trung điểm của BC

\(\Rightarrow K\) là trung điểm của AB

Tứ giác AMBI có:

K là trung điểm của AB (cmt)

K là trung điểm của MI (gt)

\(\Rightarrow AMBI\) là hình bình hành

\(\Rightarrow AI=BM\)

Mà \(BM=CM\) (do M là trung điểm của BC)

\(\Rightarrow AI=CM\)

Do \(AMBI\) là hình bình hành (cmt)

\(\Rightarrow AI\) // \(BM\)

\(\Rightarrow AI\) // \(CM\)

Tứ giác \(ACMI\) có:

\(AI\) // \(CM\left(cmt\right)\)

\(AI=CM\left(cmt\right)\)

\(\Rightarrow ACMI\) là hình bình hành

Mà E là trung điểm của AM

\(\Rightarrow\) E là trung điểm của CI

Hay C, E, I thẳng hàng

c) Để \(AKMH\) là hình vuông thì:

\(MH=MK\) (1)

Do \(MH\perp AC\) (cmt)

\(AC\perp AB\left(cmt\right)\)

\(\Rightarrow MH\) // \(AB\)

Mà M là trung điểm của BC

\(\Rightarrow H\) là trung điểm của AC

\(\Rightarrow MH\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MH=\dfrac{AB}{2}\) (2)

Lại có:

M là trung điểm của BC (cmt)

K là trung điểm của AB (cmt)

\(\Rightarrow MK\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MK=\dfrac{AC}{2}\) (3)

Từ (1), (2), (3) \(\Rightarrow AB=AC\)

\(\Rightarrow\Delta ABC\) cân tại A

Vậy để AKMH là hình vuông thì \(\Delta ABC\) vuông cân tại A

17 tháng 11 2023

giúp em với ạ em cảm ơn