K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7

Số huy chương Đồng đoàn thể thao Việt Nam nhận được là:

288 - 183 = 105 (huy chương) 

ĐS: ...

9 tháng 10

🥋🥊🥇🥈🥉🎖🏅🏆

7 tháng 7

Ta có BĐT Bunhiacopxki:

\(\left(1\cdot\sqrt{a}+1\cdot\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\Leftrightarrow\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\) (*)  

Dấu "=" xảy ra khi: \(\dfrac{\sqrt{a}}{1}=\dfrac{\sqrt{b}}{1}\Leftrightarrow a=b\)

a) \(2\le x\le4\)

Áp dụng bđt (*) ta có:  

\(A=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{2\left(x-2+4-x\right)}=2\) 

Dấu "=" xảy ra khi: \(x-2=4-x\Leftrightarrow x=3\) (tm) 

b) \(-2\le x\le6\)

Áp dụng bđt (*) ta có:  

\(B=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2\left(6-x+x+2\right)}=4\)

Dấu "=" xảy ra khi: \(6-x=x+2\Leftrightarrow x=2\left(tm\right)\)

c) \(0\le x\le2\) 

\(C=\sqrt{x}+\sqrt{2-x}\le\sqrt{2\left(x+2-x\right)}=2\)

Dấu "=" xảy ra khi: \(x=2-x\Leftrightarrow x=1\left(tm\right)\)

 

7 tháng 7

\(1)\left(\dfrac{1}{5}\right)^5\cdot5^5\\ =\left(\dfrac{1}{5}\cdot5\right)^5\\ =1^5\\ =1\\ 2)\left(\dfrac{2}{5}\right)^9\cdot5^9\\ =\left(\dfrac{2}{5}\cdot5\right)^9\\ =2^9\\ 3)\left(\dfrac{4}{9}\right)^3\cdot3^3\\ =\left(\dfrac{4}{9}\cdot3\right)^3\\ =\left(\dfrac{4}{3}\right)^3\\ 4)\left(\dfrac{3}{7}\right)^2\cdot\left(-7\right)^4\\ =\left(\dfrac{3}{7}\right)^2\cdot\left[\left(-7\right)^2\right]^2\\ =\left(\dfrac{3}{7}\right)^2\cdot49^2\\ =\left(\dfrac{3}{7}\cdot49\right)^2\\ =\left(3\cdot7\right)^2\\ =21^2\\ 5)\left(-11\right)^{12}\cdot\left(\dfrac{4}{11}\right)^6\\ =\left[\left(-11\right)^2\right]^6\cdot\left(\dfrac{4}{11}\right)^6\\ =121^6\cdot\left(\dfrac{4}{11}\right)^6\\ =\left(121\cdot\dfrac{4}{11}\right)^6\\ =\left(4\cdot11\right)^6\\ =44^6\\ 6)\left(-6\right)^8\cdot\left(\dfrac{5}{6}\right)^7\\ =\left(-6\right)\cdot\left(-6\right)^7\cdot\left(\dfrac{5}{6}\right)^7\\ =\left(-6\right)\cdot\left(-6\cdot\dfrac{5}{6}\right)^7\\ =\left(-6\right)\cdot\left(-5\right)^7\)

7 tháng 7

  Kẻ H\(x\) // FG 

 Ta có : \(\widehat{xHI}\) = \(\widehat{JIH}\) = 450 (Hai góc so le trong)

  \(\widehat{xHG}\) + \(\widehat{FGH}\) = 1800 (hai góc trong cùng phía)

⇒ \(\widehat{xHG}\) = 1800 - 1350 = 450

\(\widehat{IGH}\) = \(\widehat{xHG}\) + \(\widehat{xHI}\) = 450 + 450 = 900

Vậy HG vuông góc với HI

 

 

 

7 tháng 7

  Kẻ H\(x\) // FG 

 Ta có : \(\widehat{xHI}\) = \(\widehat{JIH}\) = 450 (Hai góc so le trong)

  \(\widehat{xHG}\) + \(\widehat{FGH}\) = 1800 (hai góc trong cùng phía)

⇒ \(\widehat{xHG}\) = 1800 - 1350 = 450

\(\widehat{IGH}\) = \(\widehat{xHG}\) + \(\widehat{xHI}\) = 450 + 450 = 900

Vậy HG vuông góc với HI

 

 

1
7 tháng 7

Bài 13:

\(1)A=x^2-x+1\\ =\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\\ 2)B=x^2+x+1\\ =\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\\ 3)C=x^2+2x+2\\ =\left(x^2+2x+1\right)+1\\ =\left(x+1\right)^2+1\ge1>0\forall x\)

\(4)A=x^2-5x+10\\ =\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{15}{4}\\ =\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}>0\forall x\\ 5)B=x^2-8x+20\\ =\left(x^2-8x+16\right)+4\\ =\left(x-4\right)^2+4\ge4>0\forall x\\ 6)C=x^2-8x+17\\ =\left(x^2-8x+16\right)+1\\ =\left(x-4\right)^2+1\ge1>0\forall x\) 

\(7)A=x^2-6x+10\\ =\left(x^2-6x+9\right)+1\\ =\left(x-3\right)^2+1\ge1>0\forall x\\ 8)B=9x^2-6x+2\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\ge1>0\forall x\\ 9)C=2x^2+8x+15\\ =\left(2x^2+8x+8\right)+7\\ =2\left(x^2+4x+4\right)+7\\ =2\left(x+2\right)^2+7\ge7>0\forall x\)