giả sử x=\(\frac{a}{m}\),y=\(\frac{b}{m}\)(a,b,m \(\in\)Z, m>0) và x<y. Hãy chứng tỏ rằng nếu chọn z=\(\frac{2a+1}{2m}\)thì ta có x<z<y
giúp mik nha yêu mn ♥♥♥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tg ABH và tg ADH có :
BH=DH(gt)
AH chung
∠AHB=∠AHC (=90 độ)
=> tg ABH = tg ADH ( c.g.c)
=> AB = AB ( 2 cạnh tương ứng )
=> tg ABD cân (1)
Trong tg ABC có : ∠A+∠B+∠C= 180 độ
=> 1/2∠B+∠B=90 độ
=> ∠B= 60 độ (2)
Từ (1) , (2) => tg ABD là tg đều
b, +) Ta có : ∠BAD + ∠DAC = ∠BAC
=> 60 độ + ∠DAC = 90 độ
=>∠DAC = 30 độ
Lại có : ∠DCA = 90 độ - 60 độ = 30 độ (3)
=> ∠DAC = ∠DCA ( =30 độ )
=> tg DAC cân tại D => AD=CD
+) Xét tg HDA và tg EDC có :
AD=CD(cmt)
∠HDA= ∠EDC ( đđ')
=> tg HDA = tg EDC ( ch-gn)
=> DH=DE( 2 cạnh tương ứng )
=> tg DHE cân tại D
+)Lại có : ∠ADC= 180 độ - ∠DAC -∠DCA= 120 độ
=>∠ADC=∠HDE(=120 độ)
=> ∠DHE = 180 - 120/2 = 30 (4)
Từ (3),(4)=> ∠DCA= ∠DHE
Mà chúng ở vị trí SLT => HE//AC
Bài giải
a, \(3\frac{1}{3}\text{ : }2\frac{1}{2}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{10}{3}\text{ : }\frac{5}{2}-1< x< \frac{23}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{4}{3}-1< x< \frac{23}{7}+\frac{5}{2}\)
\(\frac{1}{3}< x< \frac{81}{14}\)
\(\Rightarrow\text{ }0,\left(3\right)< x< 5,78...\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)
b, \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(\frac{1}{2}-\frac{7}{12}< x< \frac{1}{48}+\frac{5}{48}\)
\(-\frac{1}{12}< x< \frac{1}{8}\)
\(\Rightarrow\text{ }-0,08\left(3\right)< x< 0,125\)
\(\Rightarrow\text{ }x\in\varnothing\)
Gọi thể tích thanh sắt là a, thanh nhôm là b. Theo đề ta có:
7,8a + 2,7b = 1050
a = b <=> a - b = 0
Giải hpt ta có a = 100 cm3 ; b = 100 cm3
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!