K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Phân tích được : \(\left(x^2+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2=-10\)

<=> \(\left(x^2-y+1\right)\left(x^2+y\right)=-10\)

Mà \(-10=-1.10=-10.1=-2.5=-5.2\)

Mình làm 1 trường hợp còn lại bạn làm tương tự nha : 

VD cặp số đầu tiên là -1.10 => \(\hept{\begin{cases}x^2-y+1=-1\\x^2+y=10\end{cases}}\)

=> \(\hept{\begin{cases}x^2-y=-2\\x^2+y=10\end{cases}}\)=> hoặc x=-2 y=6 hoặc x=2 y=6

14 tháng 3 2018

Ta có : \(x^4+x^2-y^2+y+10=0\)

\(\Leftrightarrow\left(x^4-y^2\right)+\left(x^2+y\right)=-10\)

\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=-10\)

\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y+1\right)=-10\)

Vậy nên \(x^2+y;x^2-y+1\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng:

\(x^2+y\)-1-2-5-1012510
\(x^2-y+1\)10521-10-5-2-1
y-5-3-3-56446
x\(\pm2\)\(\pm1\)(L)(L)(L)(L)\(\pm1\)\(\pm2\)
(x;y)(2;-5) , (-2;-5)(1;-3) , (-1; -3)    (1;4) , (-1;4)(2;6) , (-2;6)

Vậy có 8 cặp số (x;y) thỏa mãn.

12 tháng 3 2018

Ta có : \(x^2+2012x+2011^{2011}-1=0\)

\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)

\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)

Giả sử x là một số nguyên thì VT là một số chính phương.

Khi đó VP cũng là số chính phương.

Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.

Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.

Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên. 

7 tháng 3 2018

Tịnh tách các bài ra nhé.

4 tháng 3 2018

Đặt x = a + b; y = ab thì: 
đpcm <=> x² - 2y + (1 + y)²/x² ≥ 2 
<=> x²(x² - 2y) + (1 + y)² - 2x² ≥ 0 
<=> x⁴ - 2x²y + y² + 2y + 1 - 2x² ≥ 0 
<=> (x²)² + (-y)² + (-1)² + 2.(-1).x² + 2.(-1).(-y) + 2.x².(-y) ≥ 0 
<=> (x² - y - 1)² ≥ 0 (luôn đúng)  đpcm

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

4 tháng 3 2018

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

3 tháng 3 2018

Gọi Quãng đường AB là x ( km ) ( x > 0 )

Thời gian dự định \(\frac{x}{60}\left(h\right)\)

Quãng đường đi 1 giờ đầu là 60 ( km )

Quãng đường còn lại là x - 60 ( km )

Theo đề bài ta có phương trình:

\(1+\frac{3}{4}+\frac{x-60}{80}=\frac{x}{60}\)

\(\Leftrightarrow\frac{240}{240}+\frac{180}{240}+\frac{3\left(x+60\right)}{240}=\frac{4x}{240}\)

\(\Leftrightarrow240+180+3x-180=4x\)

\(\Leftrightarrow240+180+3x-180-4x=0\)

\(\Leftrightarrow-x+240=0\Leftrightarrow-x=-240\)

\(\Leftrightarrow x=240\left(tmđk\right)\)

Vậy quãng đường AB dài 240 ( km ) 

3 tháng 3 2018

Đổi:45 phút=\(\frac{45}{60}=\frac{3}{4}\)(giờ)

Gọi quãng đường AB là:a(km)    ĐK:\(a>0\)

Ta có phương trình:\(1+\frac{3}{4}+\frac{a-60}{80}=\frac{a}{60}\)

\(\Rightarrow\frac{7}{4}=\frac{a}{60}-\frac{a-60}{80}\)\(\Rightarrow\frac{7}{4}=\frac{80a-60a+3600}{4800}\)

\(\Rightarrow\frac{7}{4}=\frac{20a+3600}{4800}\Rightarrow7=\frac{20a+3600}{1200}\Rightarrow20a+3600=7.1200=8400\)

\(\Rightarrow20a=4800\Rightarrow a=240\)(thỏa mãn điều kiện)

Vậy quãng đường AB dài:240 km