K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

\(A=\left(0,3.5-0,5:\frac{1}{3}\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)

\(A=\left(0,3.5-0,5.3\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)

\(A=\left(1,5-1,5\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)

\(A=0.\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)

\(A=0\)

VẬY    \(A=0\)

(0,3.5-0,5:1/3).(1/2006^2+1/2008^2)

(1,5-1,5).(1/200^2+1/2008^2)

0.(1/2006^2+1/2008^2)

0

10 tháng 8 2020

a, dễ nhé 

b, \(\frac{z}{x}=\frac{-3}{5}\Leftrightarrow\frac{z}{-3}=\frac{x}{5}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{z}{-3}=\frac{x}{5}=\frac{40x+70z}{-120+350}=\frac{1000}{230}=\frac{100}{23}\)

tự thay nhé

10 tháng 8 2020

c, Đặt \(\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)

Ta có : \(xyz=-1680\)

\(\Leftrightarrow5k.6k.7k=-1680\)

\(\Leftrightarrow210k^3=-1680\Leftrightarrow k^3=-8\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)

d, Theo bài ra ta có : \(2x=3y=4z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)

Áp dụng t/c dãy tỉ số bằng nhau ra luôn nhé 

10 tháng 8 2020

    Giải

Mỗi bao gạo cân nặng số kg là:

    243,2 : 8 = 30,4 (kg)

12 bao gạo như thế nặng số kg là:

    30,4  x 12 = 364,8 (kg)

           Đáp số: 364,8 kg

HỌC TỐT!!

10 tháng 8 2020

Giải

Một bao gạo cân nặng là:

243,2 : 8 = 30,4(kg)

12 bao gạo như thế cân nặng là:

30,4 x 12= 364,8 (kg)

Đ/s: 364,8 kg.

10 tháng 8 2020

a,Áp dụng t/c dãy tỉ số bằng nhau 

 \(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)

\(x=30;y=21;z=69\)

b, Theo bài ra ta có : 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)(*)

\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)(**)

Từ (*) ; (**) ta có : \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)

Áp dung t/c dãy tỉ số bằng nhau 

\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

\(x=42;y=63;z=36\)

10 tháng 8 2020

                                                                     Bài giải

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)

\(\Rightarrow\hept{\begin{cases}x=3\cdot10=30\\y=3\cdot7=21\\z=3\cdot23=69\end{cases}}\)

Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(30\text{ ; }21\text{ ; }69\right)\)

b, Ta có : 

\(\frac{x}{2}=\frac{y}{3}\text{ }\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}\)

\(\frac{y}{7}=\frac{z}{4}\text{ }\Rightarrow\text{ }\frac{y}{21}=\frac{z}{12}\)

\(\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

                   ( Áp dụng tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}x=3\cdot14=42\\y=3\cdot21=63\\z=3\cdot12=36\end{cases}}\)

Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(42\text{ ; }63\text{ ; }36\right)\)

10 tháng 8 2020

\(A=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(A=\sqrt{a-1}+1+1-\sqrt{a-1}\) (  DO: a < 2 - gt => \(1>\sqrt{a-1}\))

\(A=2\)

Vậy A = 2.

10 tháng 8 2020

\(B=\sqrt{\left(\sqrt{2x-1}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2x-1}-\sqrt{2}\right)^2}\)

\(B=\sqrt{2x-1}+\sqrt{2}-\left(\sqrt{2}-\sqrt{2x-1}\right)\)     

(     DO: \(x< \frac{3}{2}\)nên \(2>2x-1\)=> \(\sqrt{2}>\sqrt{2x-1}\))

\(=>B=2\sqrt{2x-1}\)

Vậy \(B=2\sqrt{2x-1}\)

10 tháng 8 2020

Trl:

10987:200=54,935.

Hok tốt!

trả lời

10987:200=54,935

tích cho mình nha

10 tháng 8 2020

\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{1}{\sqrt{x}+1}\)

Vậy    \(S=\frac{1}{\sqrt{x}+1}\)

10 tháng 8 2020

\(P=\frac{3x+3\sqrt{x}-3-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{x+\sqrt{x}-2}\)

\(P=\frac{3x+3\sqrt{x}-3-x+1-x+4}{x+\sqrt{x}-2}\)

\(P=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)