x^2y.2/3xz^3 thu gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\dfrac{1}{2}\ne\dfrac{2}{-3}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y-2x+3y=2m+6-m=m+6\\x+2y=m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\cdot\dfrac{m+6}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\end{matrix}\right.\)
x+y=-3
=>\(\dfrac{5m+9+m+6}{7}=-3\)
=>6m+15=-21
=>6m=-36
=>m=-6
Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)
\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\) (1)
Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)
Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)
\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)
\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)
\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)
\(\Leftrightarrow g\left(x\right)\) là hàm lẻ
Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:
(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)
\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn
Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)
\(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)
\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)
\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)
\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)
\(I=6\)
Có 3 năng lượng mặt trời,năng lượng gió,năng lượng nước cháy
có 5 loại năng loại. Là: cơ năng, nhiệt năng, điện năng, hóa năng, quang năng
\(360=2^3\cdot3^2\cdot5;420=2^2\cdot3\cdot5\cdot7\)
=>\(BCNN\left(360;420\right)=2^3\cdot3^2\cdot5\cdot7=2520\)
Vì vận động viên thứ nhất chạy một vòng hết 360 giây, vận động viên thứ hai chạy một vòng hết 420 giây nên sau ít nhất là BCNN(360;420)=2520 giây thì hai VĐV này mới lại gặp nhau
=>Sau ít nhất là 2520 giây=42 phút thì hai người mới gặp lại nhau
\(B=5+5^2+5^3+...+5^{89}+5^{90}\)
\(B=\left(5+5^2+5^3+5^4\right)+...+\left(5^{87}+5^{88}+5^{89}+5^{90}\right)\)
\(B=5.\left(1+5+25+125\right)+...+5^{87}.\left(1+5+25+125\right)\)
\(B=5.156+...+5^{87}.156\)
\(B=\left(5+...+5^{87}\right).156\)
Mà \(156⋮26\) nên
\(\Rightarrow\left(5+...+5^{87}\right).156⋮26\) (hay \(B⋮26\))
\(\Rightarrow B⋮26\left(đpcm\right)\)
\(\dfrac{x}{y}=\dfrac{y}{10}=\dfrac{10}{x}=\dfrac{x+y+10}{y+10+x}=1\)
\(\Rightarrow x=y=10\)
Olm chào em, ghép như trong hình là hình nào em nhỉ. Ở đây chưa có hình.
@Nguyễn Thị Thương Hoài
@Nguyễn Lê Phước Thịnh
@Lê Minh Vũ
.... Giúp em với ạ!!
\(x^2y\cdot\dfrac{2}{3}xz^3\)
\(=\dfrac{2}{3}\cdot\left(x^2\cdot x\right)\cdot y\cdot z^3\)
\(=\dfrac{2}{3}x^3yz^3\)