\(\dfrac{2\sqrt{2x^3}+1}{\sqrt{2x}+1}-\sqrt[]{2x}\left(\sqrt{2x}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{\left(2-\sqrt{3}\right)^2\left(26+15\sqrt{3}\right)}-\sqrt{\left(2+\sqrt{3}\right)^2\left(26-15\sqrt{3}\right)}=\)
\(=\sqrt{\left(7-4\sqrt{3}\right)\left(26+15\sqrt{3}\right)}-\sqrt{\left(7+4\sqrt{3}\right)\left(26-15\sqrt{3}\right)=}\)
\(=\sqrt{7.26+7.15\sqrt{3}-4.26\sqrt{3}-180}-\sqrt{7.26-7.15\sqrt{3}+4.26\sqrt{3}-180}=\)
\(=\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}\)
ĐKXĐ : \(x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}\ne0\)
\(\Leftrightarrow x\ne\sqrt[4]{2}\)
\(P=\dfrac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}}\)
\(=\dfrac{x^2-\sqrt{2}}{\left(x^4-\sqrt{2}x^2\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)
\(=\dfrac{x^2-\sqrt{2}}{\left(x^2+\sqrt{3}\right)\left(x^2-\sqrt{2}\right)}=\dfrac{1}{x^2+\sqrt{3}}\)
a, Để đường thẳng y = (m+ 2)\(x\) + 3 và y = (3m + 1)\(x\) - 5 song song với nhau ⇔ \(\left\{{}\begin{matrix}m+2=3m+1\\3\ne-5\end{matrix}\right.\)
⇒ 3m - m = 2 - 1
2m = 1
m = \(\dfrac{1}{2}\)
b, Hai đường thẳng cắt nhau khi:
m +2 \(\ne\) 3m + 1
3m - m \(\ne\) 2 - 1
2m \(\ne\) 1
m \(\ne\) \(\dfrac{1}{2}\)
\(\sqrt{2}\)\(\times\)\(\sqrt{4}\) - \(\sqrt{15}\) = 2\(\sqrt{2}\) - \(\sqrt{15}\)
Kẻ đường cao AH của tam giác ABC. Ta dễ tính được \(\widehat{ADH}=\widehat{B}+\widehat{BAD}=45^o+\dfrac{\widehat{BAC}}{2}=45^o+\dfrac{60^o}{2}=75^o\).
Từ đó suy ra tam giác ACD cân tại A hay \(AC=AD=2\). Đồng thời \(AH=AC.\sin\widehat{C}=2.\sin75^o=\dfrac{\sqrt{6}+\sqrt{2}}{2}\).
\(\Delta ABH\) vuông cân tại H nên \(AB=AH\sqrt{2}=\dfrac{\sqrt{6}+\sqrt{2}}{2}.\sqrt{2}=1+\sqrt{3}\) và \(BH=AH=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)
Mà ta lại có \(CH=AC.\cos C=2\cos75^o=\dfrac{\sqrt{6}-\sqrt{2}}{2}\) nên \(BC=BH+CH=\dfrac{\sqrt{6}+\sqrt{2}}{2}+\dfrac{\sqrt{6}-\sqrt{2}}{2}=\sqrt{6}\).
Thế thì chu vi của tam giác ABC bằng \(AB+BC+CA=1+\sqrt{3}+\sqrt{6}+2=3+\sqrt{3}+\sqrt{6}\left(cm\right)\)
Và diện tích của tam giác ABC bằng
\(\dfrac{1}{2}AC.BC.\sin C=\dfrac{1}{2}.2.\sqrt{6}.\sin75^o=\dfrac{3+\sqrt{3}}{2}\left(cm^2\right)\)
Lời giải:
Đặt $\sqrt{x}=t(t>0)$
$B=\frac{t^3-2t}{t^2(t+1)}=\frac{t^2-2}{t^2+t}$
Điều phải chứng minh tương đương với:
$B^{2021}+1> B(B^{2020}+1)$
$\Leftrightarrow B<1$
$\Leftrightarrow t^2-2}{t^2+t}-1<0$
$\Leftrightarrow \frac{-2-t}{t^2+t}<0$ (luôn đúng với mọi $t>0$)
Vậy.......
Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))
\(\Leftrightarrow x=4y\)
Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)
\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)
Đáp án mà em chọn là sai rồi em nhé.
Em chọn đáp án: (\(\sqrt{7x}\) + \(\sqrt{5}\))2
Đáp án đúng phải là: (\(\sqrt{7}\)\(x\) + \(\sqrt{5}\))2
\(\sqrt{7x}\) và \(\sqrt{7}\)\(x\) khác nhau hoàn toàn em nhé
vì \(\sqrt{7x}\) = \(\sqrt{7}\) \(\times\) \(\sqrt{x}\)
\(\sqrt{7}\)\(x\) = \(\sqrt{7}\) \(\times\) \(x\)
Nên \(\sqrt{7x}\) \(\ne\) \(\sqrt{7}\)\(x\)
Đáp án của em chọn là sai.
\(A=\dfrac{2\sqrt{2x^3}+1}{\sqrt{2x}+1}-\sqrt{2x}\left(\sqrt{2x}-1\right)=\dfrac{\sqrt{8x^3}+1}{\sqrt{2x}+1}-\sqrt{2x}\left(\sqrt{2x}-1\right)\)
\(=\dfrac{\left(\sqrt{2x}+1\right)\left(2x-\sqrt{2x}+1\right)}{\sqrt{2x}+1}-2x+\sqrt{2x}\)
\(=2x-\sqrt{2x}+1-2x+\sqrt{2x}=1\)
Vậy A=1