1. Tổng của hai đa thức M = 2x2 - 4xy + 6y2 ; N = 2x2 + 2xy - 4y2 là bao nhiêu?
2. Tìm đa thức M sao cho: M + (x3 - 2xy2 + y3 ) = x3 + 5xy2 - y3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2025-\left(2023-2022\right)^{2024}+\left(2024+1\right)^0\\ =2025-1^{2024}+2025^0\\ =2025-1+1\\ =2025\\ b,?\)
Nhìn đề câu b không hiểu bạn
`a, 2025 - (2023 - 2022)^2024+(2024+1)^0`
`= 2025 - 1^2024 + 2025^0`
`= 2025 - 1 +1`
`= 2024+1`
`=2025`
`b, (2^7)/13 . 3/(2^7)+ (2^10)/14 . 1/(2^6)`
`= 13/3+ (2^6 . 2^4)/14 . 1/(2^6)`
`= 13/3 + (2^4)/14`
`=13/3 + 16/14`
`= 115/21`
a, Diện tích xung quanh bể cá dạng hình hộp chữ nhật là:
\(2\cdot\left(4+5\right)\cdot10=180\left(cm^2\right)\)
Diện tích toàn phần bể cá dạng hình hộp chữ nhật là:
\(180+2\cdot4\cdot5=220\left(cm^2\right)\)
Thể tích bể cá dạng hình hộp chữ nhật là:
\(4\cdot5\cdot10=200\left(cm^3\right)\)
b, Diện tích xung quanh khi đổ nước vào bể cao 8 cm là:
\(2\cdot\left(4+5\right)\cdot8=144\left(cm^2\right)\)
Diện tích toàn phần khi đổ nước vào bể cao 8 cm là:
\(144+2\cdot4\cdot5=184\left(cm^2\right)\)
Thể tích khi đổ nước vào bể cao 8 cm là:
\(4\cdot5\cdot8=160\left(cm^3\right)\)
c, Thể tích phần không chứa nước là:
\(200-160=40\left(cm^2\right)\)
d, Tổng thể tích sau khi bỏ đá là:
\(160+100=260\left(cm^3\right)\)
Nước tràn ra ngoài là:
\(260-200=60\left(cm^3\right)\)
a) Diện tích xung quanh của bể cá là:
\(\left(4+5\right)\times2\times10=180\left(cm^2\right)\)
Diện tích toàn phần của bể cá là:
\(180+2\times4\times5=220\left(cm^2\right)\)
Thể tích của bể là:
\(4\times5\times10=200\left(cm^3\right)\)
b) Diện tích xung quanh:
\(\left(4+5\right)\times2\times8=144\left(cm^2\right)\)
Diện tích toàn phần:
\(144+2\times4\times5=184\left(cm^2\right)\)
Thể tích của nước có trong bể:
\(4\times5\times8=160\left(cm^3\right)\)
c) Diện tích phần không có nước là:
`200-160=40(cm^3)`
d) Khi bỏ cục đá vào thì thể tích của nước và cục đá là:
\(100+160=260\left(cm^2\right)\)
Vì: `260>200`
`=>` Nước bị tràn ra ngoài
Thể tích nước bị tràn là:
`260-200=60(cm^3)`
\(A=2+2^2+...+2^{100}\\ 2A=2^2+2^3+...+2^{101}\\ 2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\\ A=2^{101}-2\\ B=6^0+6^1+6^2+...+6^{1000}\\ 6B=6+6^2+...+6^{1001}\\ 6B-B=\left(6+6^2+...+6^{1001}\right)-\left(1+6+...+6^{1000}\right)\\ 5B=6^{1001}-1\\ B=\dfrac{6^{1001}-1}{5}\\ C=3+3^3+3^5+...+3^{101}\\ 3^2C=3^3+3^5+3^7+...+3^{103}\\ 9C-C=\left(3^3+3^5+3^7+...+3^{103}\right)-\left(3+3^3+3^5+...+3^{101}\right)\\ 8C=3^{103}-3\\ C=\dfrac{3^{103}-3}{8}\)
\(D=5+5^2+5^4+...+5^{98}\\ 5^2D=5^3+5^4+5^6+...+5^{100}\\ 25D-D=\left(5^3+5^4+5^6+....+5^{100}\right)-\left(5+5^2+5^4+...+5^{98}\right)\\ 24D=5^{100}+5^3-5-5^2\\ 24D=5^{100}+125-5-25\\ 24D=5^{100}+95\\ D=\dfrac{5^{100}+95}{24}\\ E=3^0+3^3+3^6+...+3^{96}+3^{99}\\ E=1+3^3+...+3^{99}\\ 3^3E=3^3+3^6+...+3^{102}\\ 27E-E=\left(3^3+3^6+...+3^{102}\right)-\left(1+3^3+...+3^{99}\right)\\ 26E=3^{102}-1\\ E=\dfrac{3^{102}-1}{6}\)
Gọi số học sinh nam của lớp đó là `a` (học sinh)
Số học sinh nữ của lớp đó là `b` (học sinh)
ĐK: `0<a,b<43` và `a,b∈N`
Số học sinh nam hơn số học sinh nữ là 3 hs nên ta có pt:
`a-b=3(1)`
Số học sinh của lớp là 43 học sinh nên ta có pt:
`a+b=43(2) `
Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}a-b=3\\a+b=43\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=46\\b=a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=23\\b=23-3=20\end{matrix}\right.\left(tm\right)\)
Vậy: ...
Chào các bạn, mình tên là Minh Hương, hiện đang là sinh viên năm thứ ba tại trường Đại học Xã hội và Nhân văn. Mình rất yêu thích việc nghiên cứu và tìm hiểu về văn hóa dân tộc. Trong thời gian rảnh, mình thường hay tham gia các hoạt động ngoại khóa và các buổi hội thảo để mở rộng kiến thức và kết nối với bạn bè. Một trong những sở thích lớn của mình là đọc sách, đặc biệt là các thể loại sách văn học và lịch sử. Mình cũng rất thích đi du lịch để khám phá những vùng đất mới mẻ và thú vị. Mình luôn cố gắng duy trì sự cân bằng giữa học tập và giải trí để có thể phát triển toàn diện.
Từ ghép:
Từ láy:
\(\Leftrightarrow2mx^2-2mx-x^2+1=0\)
\(\Leftrightarrow2mx\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2mx-x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\left(2m-1\right)x=1\end{matrix}\right.\)
Pt có nghiệm thuộc khoảng đã cho khi \(\left(2m-1\right)x=1\) có nghiệm thuộc (-1;0)
\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne0\\x=\dfrac{1}{2m-1}\in\left(-1;0\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1< \dfrac{1}{2m-1}< 0\end{matrix}\right.\) \(\Rightarrow m< 0\)
Bài 1
a) Với a = 2172, b = 158, ta có:
5024 - (a - b) = 5024 - (2172 - 158)
= 5024 - 2014
= 3010
b) Do n là số lẻ lớn nhất nhỏ hơn 7 nên n = 5
Ta có:
(672 : n + 312) × 8 = (672 : 5 + 312) × 8
= (134,4 + 312) × 8
= 446,4 × 8
= 3571,2
Bài 4:
a: 15126
Chữ số 5 thuộc hàng nghìn, lớp nghìn
b: 583190
Chữ số 5 thuộc hàng trăm nghìn, lớp nghìn
c: 15134300
=>Chữ số 5 thuộc hàng triệu, lớp triệu
d: 12346795
=>Chữ số 5 thuộc hàng đơn vị, lớp nghìn
Gọi `x` là số thuộc ước của 300 và bội của 25
`=> x ⋮ 25` và `300 ⋮ x`
Ta có:
`300 = 1. 2^2 . 3 . 5^2`
Mà ` x ⋮ 25` nên `x` có dạng: `5^2 k` (`k ∈ N`*)
`=> k ∈ ` {`1 ; 2 ; 2^2 ; 3 ; 2 . 3 ; 2^2 . 3`}
`=> k ∈` {`1 ; 2 ; 4 ; 3 ; 6; 12`}
Khi đó `x ∈ {25;50;100;75;150;300}`
Ư(300) = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 200, 300}
B(25) = {1, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300}
Vậy, các số vừa thuộc về Ư(300) vừa thuộc về B(25) là:
{25, 50, 75, 100, 150}
\(\left(x+1\right)^3+9=-116\)
=>\(\left(x+1\right)^3=-116-9=-125=\left(-5\right)^3\)
=>x+1=-5
=>x=-5-1=-6
\(1,M+N\\ =\left(2x^2-4xy+6y^2\right)+\left(2x^2+2xy-4y^2\right)\\ =2x^2-4xy+6y^2+2x^2+2xy-4y^2\\ =\left(2x^2+2x^2\right)+\left(-4xy+2xy\right)+\left(6y^2-4y^2\right)\\ =4x^2-2xy+2y^2\\ 2,M+\left(x^3-2xy^2+y^3\right)=x^3+5xy^2-y^3\\ =>M=\left(x^3+5xy^2-y^3\right)-\left(x^3-2xy^2+y^3\right)\\ =>M=x^3+5xy^2-y^3-x^3+2xy^2-y^3\\ =>M=\left(x^3-x^3\right)+\left(5xy^2+2xy^2\right)+\left(-y^3-y^3\right)\\ =>M=7xy^2-2y^3\)
1)
M + N = (2x² - 4xy + 6y²) + (2x² + 2xy - 4y²)
= 2x² - 4xy + 6y² + 2x² + 2xy - 4y²
= (2x² + 2x²) + (-4xy + 2xy) + (6y² - 4y²)
= 4x² - 2xy + 2y²
2)
M + (x³ - 2xy² + y³) = x³ + 5xy² - y³
M = x³ + 5xy² - y³ - (x³ - 2xy² + y³)
= x³ + 5xy² - y³ - x³ + 2xy² - y³
= (x³ - x³) + (5xy² + 2xy²) + (-y³ - y³)
= 7xy² - 2y³