A = (5x - 3y)/(2x - y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-12\right)+\left(8x-19\right)-\left(9x+16\right)=4\)
\(\Leftrightarrow2x-12+8x-19-9x-16=4\)
\(\Leftrightarrow x=51\)Vậy x = 51
Ta có: \(\left(2x-12\right)+\left(8x-19\right)-\left(9x+16\right)=4\)
\(\Leftrightarrow2x-12+8x-19-9x-16=4\)
\(\Leftrightarrow2x+8x-9x=4+12+16+19\)
\(\Leftrightarrow x=51\)
Vậy............
\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{1}{n-1}\)
hay \(n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n - 1 | 1 | -1 |
n | 2 | 0 |
Ta có: \(P=\frac{2n-1}{n-1}\)
\(\Leftrightarrow P=\frac{2n-2+1}{n-1}\)
\(\Leftrightarrow P=2+\frac{1}{n-1}\)
Để \(P\inℤ\)\(\Rightarrow\)\(2+\frac{1}{n-1}\inℤ\)mà \(2\)nguyên
\(\Rightarrow\)\(1⋮n-1\)\(\Rightarrow\)\(n-1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(n-1=1\)\(\Leftrightarrow\)\(n=2\)
+ \(n-1=-1\)\(\Leftrightarrow\)\(n=0\)
Vậy ......
Ta có: \(B=\frac{3^{2021}-3^{2019}}{3^{2021}+3^{2020}}\)
\(\Leftrightarrow B=\frac{3^{2019}.\left(3^2-1\right)}{3^{2020}.\left(3+1\right)}\)
\(\Leftrightarrow B=\frac{8}{3.4}\)
\(\Leftrightarrow B=\frac{2}{3}\)
Vậy \(B=\frac{2}{3}\)
Ta có : \(B=\frac{3^{2021}-3^{2019}}{3^{2021}+3^{2020}}\)
\(=\frac{3^{2019}\left(3^2-1\right)}{3^{2020}\left(3+1\right)}\)
\(=\frac{3^{2019}.8}{3^{2020}.4}\)
\(=\frac{2}{3}\)