\(\frac{2n-1}{n-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{1}{n-1}\)

hay \(n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

n - 11-1
n20
3 tháng 2 2021

Ta có: \(P=\frac{2n-1}{n-1}\)

    \(\Leftrightarrow P=\frac{2n-2+1}{n-1}\)

    \(\Leftrightarrow P=2+\frac{1}{n-1}\)

Để \(P\inℤ\)\(\Rightarrow\)\(2+\frac{1}{n-1}\inℤ\)mà \(2\)nguyên 

\(\Rightarrow\)\(1⋮n-1\)\(\Rightarrow\)\(n-1\inƯ\left(1\right)\in\left\{\pm1\right\}\)

\(n-1=1\)\(\Leftrightarrow\)\(n=2\)

\(n-1=-1\)\(\Leftrightarrow\)\(n=0\)

Vậy ......

a, Để 3/(n-1) nguyên 

<=> 3 chia hết cho n-1 

Mà n-1 nguyên 

=> n-1 thuộc Ư(3)={-3,-1,1,3}  

=> n=-2,0,2,4

18 tháng 7 2019

1,

x-2/ 15=27/15

=>x-2=27

x=29

18 tháng 7 2019

#)Giải :

1.

\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)

\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)

P/s : Câu thứ hai cứ sao sao ý 

19 tháng 9 2017

Để : \(A=\frac{6n-5}{n-1}\in Z\) 

Thì 6n - 5 chia hết cho n - 1 

<=> 6n - 6 + 1 chia hết cho n - 1 

=> 6(n - 1) + 1 chia hết cho n - 1 

=>  1 chia hết cho n - 1 

=> n - 1 thuộc Ư(1) = {-1;1}

Vậy n = {0;2} . 

19 tháng 9 2017

Để : \(B=\frac{3n+1}{2n-3}\in Z\)

Thì 3n + 1 chia hết cho 2n - 3 

=> 6n + 2 chia hết cho 2n - 3

=> 6n - 9 + 11 chia hết cho 2n - 3

=> 3(2n - 3) + 11 chia hết cho 2n - 3

=> 11 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(11) = {-11;-1;1;11}

=> 2n = {-8;2;4;14}

=> n = {-4;1;2;7}

Vậy n = {-4;1;2;7} . 

10 tháng 8 2019

Ta có: Q = \(\frac{n^2-1}{2n-1}\)

=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)

Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1

<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}

<=> n \(\in\){1; 0; 2; -1}

11 tháng 3 2016

2(n-2) +5/ n-2 

để P nguyên thì 5 chia hết cho n-2 

hay n-2 thuộc Ư(5)

n-2 thuộc { +-1;+-5}

n thuộc { 1;3;-3;7}

11 tháng 3 2016

mình làm tiếp nhé

=\(\frac{2x-4+5}{x-2}\)=\(\frac{2x-4}{x-2}+\frac{5}{x-2}\)

\(\frac{2x-4}{x-2}\)nguyên nên để P thì\(\frac{5}{x-2}\)cũng phải nguyên

=> x-2 chia thuộc ước của 5

=> x-2 \(\in\){-5;-1;1;5}

x-2=-5;x=-3

x-2=-1;x=1

x-2=1;x=3

x-2=5;x=7

11 tháng 3 2016

mk chỉ nghĩ đc bước kế tiếp là:\(\frac{2n-4+5}{n-2}\)

24 tháng 6 2018

Để \(A=\frac{2n+7}{n+1}\) là số nguyên 

\(\Rightarrow\left(2n+7\right)⋮n+1\)

\(\Rightarrow\left(n+1\right)⋮n+1=\left(n+1\right)\cdot2⋮n+1=\left(2n+2\right)⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\)Ta có bảng sau :

\(n+1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(0\)\(-2\)\(4\)\(-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)thì \(A\)mới có giá trị nguyên

24 tháng 6 2018

Ta có  \(A=\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để  \(A\in Z\)thì  \(\frac{5}{n+1}\in Z\)

\(\Rightarrow n+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)

n+11-15-5
n0-24-6

Vậy  \(n\in\left\{0;-2;4;-6\right\}\)

14 tháng 8 2017

Bài 1 

1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)

\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)

Vậy \(A=\frac{15}{14}\)

2, 

a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)

Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)

Suy ra \(n\in\left\{6;4;8;2\right\}\)

Vậy ......

b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)

Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)

Khi đó A = 5 

 Vậy A đạt GTLN khi và chỉ khi n = 6

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)