K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4:

a: \(f\left(1\right)=-3\cdot1+2=-3+2=-1\)

b: loading...

Câu 3:

a: \(f\left(1\right)=3\cdot1-2=3-2=1\)

b: loading...

Câu 5:

Gọi độ dài quãng đường AB là x(km)

(ĐIều kiện: x>0)

Thời gian đi là \(\dfrac{x}{20}\left(giờ\right)\)

Thời gian về là \(\dfrac{x}{30}\left(giờ\right)\)

Thời gian về ít hơn thời gian đi là 15p=0,25 giờ nên ta có:

\(\dfrac{x}{20}-\dfrac{x}{30}=0,25\)

=>\(\dfrac{x}{60}=0,25\)

=>\(x=60\cdot0,25=15\left(nhận\right)\)
Vậy: Độ dài quãng đường AB là 15km

14 tháng 5

  Olm chào em, chúc mừng em đã biết vận dụng cách làm của diễn đàn vào các dạng toán tương tự khi đi thi để đạt kết quả cao. Chững tỏ chất lượng câu trả lời trên diễn đàn Olm là rất chuẩn em nhỉ.

Câu 1:

a: Khi x=3 thì \(A=\dfrac{3-6}{3+2}=\dfrac{-3}{5}\)

b: \(B=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{x^2-4}\)

\(=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6\left(x+2\right)+x\left(x-2\right)-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6x+12+x^2-2x-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{x-2}\)

c: \(P=A\cdot B=\dfrac{x+2}{x-2}\cdot\dfrac{x-6}{x+2}=\dfrac{x-6}{x-2}\)

P=3/2

=>\(\dfrac{x-6}{x-2}=\dfrac{3}{2}\)

=>\(3\left(x-2\right)=2\left(x-6\right)\)

=>3x-6=2x-12

=>x=-6(nhận)

Câu 2:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

14 tháng 5

Câu 1

Gọi x (km) là độ dài quãng đường AB (x > 0)

Thời gian đi từ A đến B: x/40 (h)

Thời gian đi từ B về A: x/50 (h)

36 phút = 3/5 h

Theo đề bài, ta có phương trình:

x/40 + x/50 + 3/5 = 6

5x + 4x + 40.3 = 200.6

9x + 120 = 1200

9x = 1200 - 120

9x = 1080

x = 1080 : 9

x = 120 (nhận)

Vậy quãng đường AB dài 120 km

14 tháng 5

Câu 2. Em xem lại đề nhé

Câu 5:

Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)

Vậy: y=-2x+b

Thay x=-1 và y=3 vào y=-2x+b, ta được:

\(\left(-2\right)\cdot\left(-1\right)+b=3\)

=>b+2=3

=>b=1(loại)

Vậy: KHông có hàm số bậc nhất nào thỏa mãn yêu cầu đề bài

Câu 4: 

Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)

Vậy: y=-2x+b

Thay x=-1 và y=4 vào y=-2x+b, ta được:

\(\left(-2\right)\cdot\left(-1\right)+b=4\)

=>b+2=4

=>b=2(nhận)

vậy: y=-2x+2

AH
Akai Haruma
Giáo viên
12 tháng 5

$b$ ở chỗ nào vậy bạn?

AH
Akai Haruma
Giáo viên
12 tháng 5

b nằm ở đâu trong PTĐT $y=ax+20$ vậy bạn?

12 tháng 5

Em k biết nữa ak

a: Xét tứ gíc AMDN có \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

nên AMDN là hình chữ nhật

=>AD=MN

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HCA}\right)\)

Do đó: ΔHBA~ΔHAC

=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)

=>\(HA^2=HB\cdot HC\)

c: \(HA^2=HB\cdot HC\)

=>\(HA^2=2\cdot8=16=4^2\)

=>HA=4(cm)

ΔHAB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)

ΔHAC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)

a: a: Xét ΔABC và ΔAED có

\(\dfrac{AB}{AE}=\dfrac{AC}{AD}\left(\dfrac{15}{5}=\dfrac{21}{7}=3\right)\)

\(\widehat{BAC}\) chung

Do đó: ΔABC~ΔAED

Vì \(\dfrac{AB}{AE}=\dfrac{AC}{AD}\)

nên \(AB\cdot AD=AE\cdot AC\)

b: \(\dfrac{AB}{AE}=\dfrac{AC}{AD}\)

=>\(\dfrac{AB}{AC}=\dfrac{AE}{AD}\)

Xét ΔABE và ΔACD có

\(\dfrac{AB}{AC}=\dfrac{AE}{AD}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE~ΔACD

=>\(\widehat{ABE}=\widehat{ACD};\widehat{AEB}=\widehat{ADC}\)

c: Xét ΔOBD và ΔOCE có

\(\widehat{OBD}=\widehat{OCE}\)

\(\widehat{BOD}=\widehat{COE}\)(hai góc đối đỉnh)

Do đó: ΔOBD~ΔOCE
=>\(\dfrac{OB}{OC}=\dfrac{OD}{OE}\)

=>\(OB\cdot OE=OD\cdot OC\)