K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 6 2024

1/

$x^2y=x-y+1$

$\Leftrightarrow y(x^2+1)=x+1$

$\Leftrightarrow y=\frac{x+1}{x^2+1}$

Với $x$ nguyên, để $y$ nguyên thì $x+1\vdots x^2+1(1)$

$\Rightarrow x(x+1)\vdots x^2+1$

$\Rightarrow (x^2+1)+(x-1)\vdots x^2+1$

$\Rightarrow x-1\vdots x^2+1(2)$

Từ $(1); (2)\Rightarrow (x+1)-(x-1)\vdots x^2+1$

$\Rightarrow 2\vdots x^2+1$

$\Rightarrow x^2+1=1$ hoặc $x^2+1=2$ (do $x^2+1\geq 1$ với mọi $x$ nguyên)

$\Rightarrow x=0$ hoặc $x=\pm 1$

$x=0$ thì $y=\frac{0^2+1}{0+1}=1$

$x=1$ thì $y=\frac{1^2+1}{1+1}=1$

$x=-1$ thì $y=0$

AH
Akai Haruma
Giáo viên
16 tháng 6 2024

2/

$x^2+4xy+3y^2+4x+6y=0$

$\Leftrightarrow (x^2+4xy+4y^2)+4(x+2y)-2y-y^2=0$

$\Leftrightarrow (x+2y)^2+4(x+2y)=y^2+2y$

$\Leftrightarrow (x+2y)^2+4(x+2y)+4=y^2+2y+4$

$\Leftrightarrow (x+2y+2)^2=(y+1)^2+3$

$\Leftrightarrow 3=(x+2y+2)^2-(y+1)^2=(x+2y+2-y-1)(x+2y+2+y+1)$

$\Leftrightarrow 3=(x+y+1)(x+3y+3)$

Do $x,y$ nguyên nên đến đây ta xét các TH sau (đoạn này đơn giản rồi).

TH1: $x+y+1=1, x+3y+3=3$

TH2: $x+y+1=-1, x+3y+3=-3$

TH3: $x+y+1=3, x+3y+3=1$

TH4: $x+y+1=-3, x+3y+3=-1$

16 tháng 6 2024

Ta có:

x²y + xy² + x + y = 2020

xy(x + y) + (x + y) = 2020

(x + y)(xy + 1) = 2020

(x + y).(11 + 1) = 2020

12(x + y) = 2020

x + y = 2020 : 12

x + y = 505/3

x² + y² = (x + y)² - 2xy

= (505/3)² - 2.11

= 255025/9 - 22

= 254827/9

AH
Akai Haruma
Giáo viên
16 tháng 6 2024

Lời giải:

Ký hiệu gốc cây là $A$, ngọn cây bị gãy là $B$, điểm gãy là $C$. Ta có:

$AC+CB=8(1)$ (m)

$AB=4$ (m)

Áp dụng định lý Pitago:

$AC^2+AB^2=BC^2$

$\Rightarrow AC^2+4^2=BC^2$

$\Rightarrow BC^2-AC^2=16$

$\Rightarrow (BC-AC)(BC+AC)=16$

$\Rightarrow (BC-AC).8=16\Rightarrow BC-AC=2(2)$

Từ $(1); (2)\Rightarrow BC=(8+2):2=5; AC=(8-2):2=3$ (m)

Vậy độ dài từ điểm gãy tới gốc là $AC=3$ m

AH
Akai Haruma
Giáo viên
16 tháng 6 2024

Hình vẽ:

16 tháng 6 2024

`P=a^3+b^3+3ab`

`=(a+b)^3-3ab(a+b)+3ab`

`=1^3-3ab.1+3ab`

`=1`

15 tháng 6 2024

\(Q=x^2(x+1)-3xy(x-y+1)-y^2(y-1)+xy\\=x^3+x^2+3xy(y-x)-3xy-y^3+y^2+xy\\=-(y^3-x^3)+3xy(y-x)+x^2-2xy+y^2\\=-(y-x)^3-3xy(y-x)+3xy(y-x)+(y-x)^2\\=-11^3+11^2=-1210\)

15 tháng 6 2024

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]-105=0\)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)-105=0\) (1)

Đặt \(x^2+10x+20=t\), khi đó (1) trở thành:

\(\left(t-4\right)\left(t+4\right)-105=0\)

\(\Leftrightarrow t^2-16-105=0\)

\(\Leftrightarrow t^2-11^2=0\)

\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Rightarrow\left(x^2+10x+20-11\right)\left(x^2+10x+20+11\right)=0\)

\(\Leftrightarrow\left(x^2+10x+9\right)\left(x^2+10x+31\right)=0\)

\(\Leftrightarrow\left(x^2+9x+x+9\right)\left[\left(x+5\right)^2+6\right]=0\)

\(\Leftrightarrow x\left(x+9\right)+\left(x+9\right)=0\) (vì \(\left(x+5\right)^2+6>0;\forall x\))

\(\Leftrightarrow\left(x+9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=-1\end{matrix}\right.\)

Vậy phương trình đã cho có tập nghiệm là $S=\{-9;-1\}$.

$Toru$

DT
15 tháng 6 2024

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=105\\ \Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=105\\ \Leftrightarrow\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2-4^2=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2=121\\ \)

\(\Rightarrow\left[{}\begin{matrix}x^2+10x+20=11\left(1\right)\\x^2+10x+20=-11\left(2\right)\end{matrix}\right.\)

Giải (1):

\(x^2+10x+9=0\\ \Leftrightarrow\left(x^2+x\right)+\left(9x+9\right)=0\\ \Leftrightarrow x\left(x+1\right)+9\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

Giải (2):

Nhận thấy: \(x^2+10x+20=\left(x+5\right)^2-5\ge-5\forall x\inℝ\)

Vậy pt (2) vô nghiệm

Vậy tập nghiệm pt là: \(S=\left\{-1;-9\right\}\)

15 tháng 6 2024

Mình nghĩ là bằng nhau.

4
456
CTVHS
15 tháng 6 2024

`060° = 60°`nhé

1: BC=BH+CH=4+9=13(cm)

Xét ΔHAB vuông tại H và ΔACB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔACB

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC=4\cdot13=52\)

=>\(BA=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)

=>\(AC=\sqrt{117}=3\sqrt{13}\left(cm\right)\)

2: ΔHAB~ΔACB

=>\(\dfrac{HA}{AC}=\dfrac{AB}{CB}\)

=>\(HA=\dfrac{AB\cdot AC}{BC}=\dfrac{2\sqrt{13}\cdot3\sqrt{13}}{13}=6\left(cm\right)\)

Xét tứ giác AKHE có \(\widehat{AKH}=\widehat{AEH}=\widehat{KAE}=90^0\)

nên AKHE là hình chữ nhật

=>AH=KE

=>KE=6(cm)

3: Xét ΔAKH vuông tại K và ΔAHB vuông tại H có

\(\widehat{HAB}\) chung

Do đó: ΔAKH~ΔAHB

=>\(\dfrac{AK}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AK\cdot AB\left(1\right)\)

Xét ΔAEH vuông tại E và ΔAHC vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHC

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AE\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AK\cdot AB=AE\cdot AC\)

=>\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Xét ΔAKE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔAKE~ΔACB

4: ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

ΔAKE~ΔACB

=>\(\widehat{AEK}=\widehat{ABC}\)

Ta có: \(\widehat{AEK}+\widehat{IAC}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>EK\(\perp\)AI tại N

15 tháng 6 2024
Bài giải:

1. Tính AB, AC:

  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AB² = AH² + HB²
    • AH² = AB² - HB²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AC² = AH² + HC²
    • AH² = AC² - HC²
  • Từ hai phương trình trên, ta có: AB² - HB² = AC² - HC²
  • Suy ra: AB² = AC² - HC² + HB²
  • Thay số: AB² = AC² - 9² + 4² = AC² - 65
  • Áp dụng định lý Pitago trong tam giác vuông ABC:
    • BC² = AB² + AC²
    • BC² = (AC² - 65) + AC² = 2AC² - 65
  • Thay BC = HB + HC = 4 + 9 = 13
    • 13² = 2AC² - 65
    • 2AC² = 13² + 65 = 224
    • AC² = 112
    • AC = √112 = 4√7 cm
  • Thay AC vào phương trình AB² = AC² - 65:
    • AB² = (4√7)² - 65 = 112 - 65 = 47
    • AB = √47 cm

2. Tính KE:

  • Áp dụng định lý Pitago trong tam giác vuông AKE:
    • KE² = AK² + AE²
  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AK² = AH² - HK²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AE² = AH² - HE²
  • Thay vào phương trình KE²:
    • KE² = (AH² - HK²) + (AH² - HE²) = 2AH² - (HK² + HE²)
  • Ta có: HK + HE = BC = 13 cm
  • Áp dụng định lý Pitago trong tam giác vuông HKE:
    • KE² = HK² + HE² = (HK + HE)² - 2HK.HE = 13² - 2HK.HE
  • Suy ra: 2AH² - (HK² + HE²) = 13² - 2HK.HE
  • 2AH² = 13² + 2HK.HE
  • AH² = (13² + 2HK.HE) / 2
  • Thay AH² = AB² - HB²:
    • AB² - HB² = (13² + 2HK.HE) / 2
    • 2(AB² - HB²) = 13² + 2HK.HE
    • 2HK.HE = 2(AB² - HB²) - 13²
    • HK.HE = (AB² - HB²) - 13²/2
    • HK.HE = (47 - 4²) - 13²/2 = -65/2
  • Vì HK và HE đều dương nên HK.HE = -65/2 là vô lý.
  • Vậy, không thể tính KE bằng cách này.

3. Chứng minh AB.AK = AE.AC; AKE ~ ACB:

  • Chứng minh AB.AK = AE.AC:
    • Xét tam giác vuông AHB và tam giác vuông AHC, ta có:
      • Góc BAH = Góc CAH (cùng bằng 90 độ)
      • Góc ABH = Góc ACH (cùng phụ với góc BAH)
    • Suy ra tam giác AHB đồng dạng với tam giác AHC (g-g)
    • Do đó: AB/AC = AH/AH = 1
    • Suy ra: AB = AC
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)
    • Do đó: AK/AC = AE/AB
    • Suy ra: AB.AK = AE.AC
  • Chứng minh AKE ~ ACB:
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)

4. Chứng minh AI vuông góc KE tại N:

  • Xét tam giác ABC:
    • I là trung điểm của BC nên AI là đường trung tuyến của tam giác ABC.
  • Xét tam giác AKE:
    • N là giao điểm của AI và KE nên N là trọng tâm của tam giác AKE.
  • Theo tính chất trọng tâm của tam giác:
    • Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
    • Do đó: AN = 2/3 AI
  • Xét tam giác vuông AHI:
    • AI là đường trung tuyến của tam giác vuông AHI nên AI = 1/2 HI.
  • Suy ra:
    • AN = 2/3 AI = 2/3 * (1/2 HI) = 1/3 HI
    • Do đó: IN = AI - AN = 1/2 HI - 1/3 HI = 1/6 HI
  • Xét tam giác vuông HKE:
    • N là trung điểm của KE nên HN là đường trung tuyến của tam giác vuông HKE.
  • Theo tính chất đường trung tuyến của tam giác vuông:
    • Đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
    • Do đó: HN = 1/2 KE
  • Suy ra:
    • IN = 1/6 HI = 1/2 HN
    • Do đó: HN = 3IN
  • Xét tam giác HIN:
    • HN = 3IN nên tam giác HIN vuông tại I (định lý đảo của định lý Pytago).
  • Kết luận:
    • AI vuông góc KE tại N.

Lưu ý:

  • Trong bài toán này, không thể tính KE bằng cách sử dụng định lý Pitago trong tam giác vuông HKE vì HK.HE là một số âm.
  • Việc chứng minh AB.AK = AE.AC và AKE ~ ACB là cần thiết để chứng minh AI vuông góc KE tại N.
  • Việc chứng minh AI vuông góc KE tại N là một ứng dụng của tính chất trọng tâm của tam giác và tính chất đường trung tuyến của tam giác vuông.
  •  
14 tháng 6 2024

loading... 

∆ABC có:

AB = BC (gt)

⇒ ∆ABC cân tại B

⇒ ∠BAC = ∠BCA (1)

Do AC là tia phân giác của ∠BAD (gt)

⇒ ∠DAC = ∠BAC (2)

Từ (1) và (2) ⇒ ∠BCA = ∠DAC

Mà ∠BCA và ∠DAC là hai góc so le trong

⇒ BC // AD

⇒ ABCD là hình thang

a: Xét ΔAEF có

AH là đường cao

AH là đường phân giác

Do đó: ΔAEF cân tại A

Xét ΔAEF có BM//EF

nên \(\dfrac{AB}{AE}=\dfrac{AM}{AF}\)

mà AE=AF

nên AB=AM

=>ΔABM cân tại A

b: Kẻ BK//AC(K\(\in\)EF)

Xét tứ giác BMFK có

BM//FK

BK//MF

DO đó: BMFK là hình bình hành

=>BK=MF

Xét ΔBDK và ΔCDF có

\(\widehat{BDK}=\widehat{CDF}\)(hai góc đối đỉnh)

DB=DC

\(\widehat{DBK}=\widehat{DCF}\)(BK//CF)

Do đó: ΔBDK=ΔCDF

=>BK=CF

Ta có: BK//FC

=>\(\widehat{BKE}=\widehat{AFE}\)

=>\(\widehat{BKE}=\widehat{BEK}\)

=>BE=BK

mà BK=FC và BK=MF

nên MF=BE=CF