Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
\(lim_{x\rightarrow2}f\left(x\right)=lim_{x\rightarrow2}\frac{\sqrt{x+7}-3}{a\left(x-2\right)}\)
\(=lim_{x\rightarrow2}\frac{x+7-9}{a\left(x-2\right)\left(\sqrt{x+7}+3\right)}=lim_{x\rightarrow2}\frac{1}{a\left(\sqrt{2+7}+3\right)}=\frac{1}{6a}\)
Để hàm số f(x) liên tục trên TXĐ \(lim_{x\rightarrow2}f\left(x\right)=f\left(2\right)\)
\(\frac{1}{6a}=3\Leftrightarrow a=\frac{1}{18}\)
Theo mik là thế này , mik ko chắc cho lắm
Bài giải:
Theo như bảng biến thiên bạn nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.
Đặt \(z=a+bi,\left(a,b\inℝ\right)\).
Ta có: \(\left(1+2i\right)z+5\overline{z}=4-2i\)
\(\Leftrightarrow\left(1+2i\right)\left(a+bi\right)+5\left(a-bi\right)=4-2i\)
\(\Leftrightarrow a-2b+\left(2a+b\right)i+5a-5bi-4+2i=0\)
\(\Leftrightarrow\left(a-2b+5a-4\right)+\left(2a+b-5b+2\right)i=0\)
\(\Leftrightarrow\hept{\begin{cases}6a-2b=4\\2a-4b=-2\end{cases}}\Leftrightarrow a=b=1\).
Vậy \(z=1+i\).
Đặt \(z=a+bi,\left(a,b\inℝ\right)\).
Ta có: \(\left(3+4i\right)z+\left(6-2i\right)\overline{z}=5+10i\)
\(\Leftrightarrow\left(3+4i\right)\left(a+bi\right)+\left(6-2i\right)\left(a-bi\right)=5+10i\)
\(\Leftrightarrow3a-4b+\left(4a+3b\right)i+6a-2b+\left(-2a-6b\right)i-5-10i=0\)
\(\Leftrightarrow\left(3a-4b+6a-2b-5\right)+\left(4a+3b-2a-6b-10\right)i=0\)
\(\Leftrightarrow\hept{\begin{cases}9a-6b=5\\2b-3b=10\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-\frac{16}{3}\end{cases}}\)
Vậy \(z=-3-\frac{16}{3}i\),
\(\frac{2-iz}{2+i}-\frac{z+2i}{1-2i}=2\overline{z}\)
\(\Leftrightarrow\frac{2-i\left(a+bi\right)}{2+i}-\frac{a+bi+2i}{1-2i}=2\left(a-bi\right)\)
\(\Leftrightarrow\frac{\left(b+2-ai\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}-\frac{\left[a+\left(b+2\right)i\right]\left(1+2i\right)}{1-2i}=2\left(a-bi\right)\)
\(\Leftrightarrow\frac{2\left(b+2\right)-a-\left(2a+b+2\right)i}{5}-\frac{a-2b-4+\left(2a+b+2\right)i}{5}=2\left(a-bi\right)\)
\(\Leftrightarrow\left[\left(2b+4\right)-a-\left(a-2b-4\right)-10a\right]-\left(2a+b+2+2a+b+2-10b\right)i=0\)
\(\Leftrightarrow\hept{\begin{cases}-12a+4b=-8\\4a-8b=-4\end{cases}}\Leftrightarrow a=b=1\).
\(a^2+b^2-ab=1^2+1^2-1.1=1\)
Bài giải:
Để có thể giải quyết được bài toán trên, bạn đọc cần tìm được 2 điểm cực trị của hàm số và viết phương trình đường thẳng đi qua chúng.
Hàm số y = x³ - 3x² + 1 có y’ = 3x² - 6x = 0 ⇔ x= 0 hoặc x = 2
x = 0 ⇒ y = 1
x = 2 ⇒ y = -3
⇒ Hàm số có hai điểm cực trị A (0;1), B (2; -3). Đường thẳng đi qua hai điểm cực trị của hàm số có phương trình 2x + y – 1 = 0.
Đường thẳng (2m - 1)x - y + 3 + m = 0 vuông góc với đường thẳng
2x + y – 1 = 0 ⇔ hai véc-tơ pháp tuyến vuông góc với nhau.
a1. a2 + b1.b2 = 0 ⇔ (2m - 1) 2 + (-1)1 = 0 ⇔ 4m - 2 - 1 = 0 ⇔ m = 3/4.
Đáp án đúng là B.
tích cho mik nha.
Bài giải:
Ta có y’ = x² – 2mx + m² – 4; y” = 2x - 2m
Hàm số đạt cực đại tại x = 3 khi và chỉ khi y'(3) = 0 , y”(3) < 0.
⇔ 9 - 6m + m² – 4 = 0 và 6 - 2m < 0
⇔ m² – 6m + 5 = 0 ; m < 3
⇔ m = 1 hoặc m = 5; m < 3
⇔ m = 1 thoả mãn
Đáp án đúng là B.
tích cho mik nha.