K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực

10 tháng 7 2021

\(lim_{x\rightarrow2}f\left(x\right)=lim_{x\rightarrow2}\frac{\sqrt{x+7}-3}{a\left(x-2\right)}\)

\(=lim_{x\rightarrow2}\frac{x+7-9}{a\left(x-2\right)\left(\sqrt{x+7}+3\right)}=lim_{x\rightarrow2}\frac{1}{a\left(\sqrt{2+7}+3\right)}=\frac{1}{6a}\)

Để hàm số f(x) liên tục trên TXĐ \(lim_{x\rightarrow2}f\left(x\right)=f\left(2\right)\)

\(\frac{1}{6a}=3\Leftrightarrow a=\frac{1}{18}\)

7 tháng 7 2021

Theo mik là thế này , mik ko chắc cho lắm

Bài giải:

Theo như bảng biến thiên bạn  nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?(Mã đề 123, đề thi năm 2018).Bài giải:Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài...
Đọc tiếp

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:

y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?

(Mã đề 123, đề thi năm 2018).

Bài giải:

Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:

y' = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1

Hàm đạt cực tiểu tại x = 0 thì y'(x) = 0 và y'(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.

Có nghĩa là :

–4(m2 - 4) > 0  và m - 2 = m² – 4 = 0

⇔ –2 < m < 2 hoặc m = 2

⇒ m = {-1, 0, 1, 2 }

Tóm lại ta nhận được 4 giá trị của m là số nguyên của m để hàm số đạt cực tiểu tại x = 0.

Bạn đọc có thể nhận thấy không hề đơn giản chút nào để giải được bài tập tìm cực trị hàm số trên. Vì thế chúng ta hãy cùng luyện tập thật nhiều và chắc các dạng bài cực trị trên. Từ đó với kĩ năng và kiến thức trên các em mới giải nhanh được câu hỏi tương tự.

giúp mik vs

0
7 tháng 7 2021
Hìnhhhhh....………ko biết

Đa giác 17 cạnh có 17 cạnh .

DD
6 tháng 7 2021

Đặt \(z=a+bi,\left(a,b\inℝ\right)\).

Ta có: \(\left(1+2i\right)z+5\overline{z}=4-2i\)

\(\Leftrightarrow\left(1+2i\right)\left(a+bi\right)+5\left(a-bi\right)=4-2i\)

\(\Leftrightarrow a-2b+\left(2a+b\right)i+5a-5bi-4+2i=0\)

\(\Leftrightarrow\left(a-2b+5a-4\right)+\left(2a+b-5b+2\right)i=0\)

\(\Leftrightarrow\hept{\begin{cases}6a-2b=4\\2a-4b=-2\end{cases}}\Leftrightarrow a=b=1\).

Vậy \(z=1+i\).

DD
6 tháng 7 2021

Đặt \(z=a+bi,\left(a,b\inℝ\right)\).

Ta có: \(\left(3+4i\right)z+\left(6-2i\right)\overline{z}=5+10i\)

\(\Leftrightarrow\left(3+4i\right)\left(a+bi\right)+\left(6-2i\right)\left(a-bi\right)=5+10i\)

\(\Leftrightarrow3a-4b+\left(4a+3b\right)i+6a-2b+\left(-2a-6b\right)i-5-10i=0\)

\(\Leftrightarrow\left(3a-4b+6a-2b-5\right)+\left(4a+3b-2a-6b-10\right)i=0\)

\(\Leftrightarrow\hept{\begin{cases}9a-6b=5\\2b-3b=10\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-\frac{16}{3}\end{cases}}\)

Vậy \(z=-3-\frac{16}{3}i\),

DD
6 tháng 7 2021

\(\frac{2-iz}{2+i}-\frac{z+2i}{1-2i}=2\overline{z}\)

\(\Leftrightarrow\frac{2-i\left(a+bi\right)}{2+i}-\frac{a+bi+2i}{1-2i}=2\left(a-bi\right)\)

\(\Leftrightarrow\frac{\left(b+2-ai\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}-\frac{\left[a+\left(b+2\right)i\right]\left(1+2i\right)}{1-2i}=2\left(a-bi\right)\)

\(\Leftrightarrow\frac{2\left(b+2\right)-a-\left(2a+b+2\right)i}{5}-\frac{a-2b-4+\left(2a+b+2\right)i}{5}=2\left(a-bi\right)\)

\(\Leftrightarrow\left[\left(2b+4\right)-a-\left(a-2b-4\right)-10a\right]-\left(2a+b+2+2a+b+2-10b\right)i=0\)

\(\Leftrightarrow\hept{\begin{cases}-12a+4b=-8\\4a-8b=-4\end{cases}}\Leftrightarrow a=b=1\).

\(a^2+b^2-ab=1^2+1^2-1.1=1\)

6 tháng 7 2021

Bài giải:

Để có thể giải quyết được bài toán trên, bạn đọc cần tìm được 2 điểm cực trị của hàm số và viết phương trình đường thẳng đi qua chúng.

Hàm số y =  x³ - 3x² + 1 có y’ = 3x² - 6x = 0 ⇔ x= 0 hoặc x = 2

x = 0 ⇒  y = 1

x = 2 ⇒  y = -3

⇒   Hàm số có hai điểm cực trị A (0;1), B (2; -3). Đường thẳng đi qua hai điểm cực trị của hàm số có phương trình 2x + y – 1 = 0.

Đường thẳng (2m - 1)x - y + 3 + m = 0 vuông góc với đường thẳng

2x + y – 1 = 0  ⇔   hai véc-tơ pháp tuyến vuông góc với nhau.

a1. a2 + b1.b2 = 0 ⇔ (2m - 1) 2 + (-1)1 = 0  ⇔ 4m - 2 - 1 = 0 ⇔ m = 3/4.

Đáp án đúng là B.

tích cho mik nha.

6 tháng 7 2021

Bài giải:

Ta có y’ = x² – 2mx + m² – 4; y” = 2x - 2m

Hàm số đạt cực đại tại x = 3 khi và chỉ khi y'(3) = 0 , y”(3) < 0.

⇔ 9 - 6m + m² – 4 = 0 và 6 - 2m < 0

⇔ m² – 6m + 5 = 0 ; m < 3

⇔ m = 1 hoặc m = 5; m < 3

⇔ m = 1 thoả mãn

Đáp án đúng là B.

tích cho mik nha.