2xy-y-2x2+x-10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{46}{46}=1\)
\(\frac{x}{10}=1\Rightarrow x=10\)
\(\frac{y}{15}=1\Rightarrow y=15\)
\(\frac{z}{21}=1\Rightarrow z=21\)
\(\Rightarrow x+y-z=10+15-21=4\)
Vậy x + y - z = 4
Ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{46}{46}=1\)
\(\Rightarrow\hept{\begin{cases}x=10\\y=15\\z=21\end{cases}}\)
\(\Rightarrow x+y-z=10+15-21=4\)
Vậy...
ĐK : \(x-1\ge0\Leftrightarrow x\ge1\)
\(\sqrt{7-x}=x-1\)
\(\Leftrightarrow7-x=\left(x-1\right)^2\)
\(\Leftrightarrow7-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x+1=7\)
\(\Leftrightarrow x\left(x-1\right)=6=3.2\)
\(\Rightarrow x=3\)