Câu 1 : Với giá trị x, y nào dưới đây thì các số hạng lần lượt là -2 ; x ; -18 ; y theo thứ tự đó lập thành cấp số nhân ?
A. x = 6 ; y = -54 B. x. = -10 ; y = -26 C. x = -6 ; y. = -54 D. x = -6 ; y = 54
Câu 2 : Cho cấp số nhân( u_n) biết u_2 = 4 ; u _4 = 9 . Tìm u_1 , công bội q , u_5 , số hạng thứ 8 .
Câu 3 : Cho cấp số nhân( u_n) biết u_1+ u_5 = 51 ; u_2 + u_6 = 102 . Tìm u_1 ; u_4 ; số hạng thứ 12 .
Câu 1:
-2;x;-18;y là cấp số nhân
=>\(\left\{{}\begin{matrix}x^2=\left(-2\right)\cdot\left(-18\right)\\\left(-18\right)^2=x\cdot y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=36\\xy=324\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=\dfrac{324}{6}=54\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=\dfrac{324}{-6}=-54\end{matrix}\right.\end{matrix}\right.\)
=>Chọn C
Câu 2:
\(u_4=u_2\cdot q^2\)
=>\(4q^2=9\)
=>\(q^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)
=>\(\left[{}\begin{matrix}q=\dfrac{3}{2}\\q=-\dfrac{3}{2}\end{matrix}\right.\)
TH1: q=3/2
\(u_2=q\cdot u_1\)
=>\(u_1=\dfrac{u_2}{q}=4:\dfrac{3}{2}=4\cdot\dfrac{2}{3}=\dfrac{8}{3}\)
\(u_5=u_1\cdot q^4=\dfrac{8}{3}\cdot\left(\dfrac{3}{2}\right)^4=\dfrac{8}{3}\cdot\dfrac{81}{16}=\dfrac{27}{2}\)
\(u_8=u_1\cdot q^7=\dfrac{8}{3}\cdot\left(\dfrac{3}{2}\right)^7=\dfrac{2^3}{3}\cdot\dfrac{3^7}{2^7}=\dfrac{3^6}{2^4}=\dfrac{729}{16}\)
TH2: q=-3/2
\(u_1=\dfrac{u_2}{q}=4:\dfrac{-3}{2}=4\cdot\dfrac{-2}{3}=-\dfrac{8}{3}\)
\(u_5=u_1\cdot q^4=-\dfrac{8}{3}\cdot\left(-\dfrac{3}{2}\right)^4=-\dfrac{8}{3}\cdot\dfrac{81}{16}=\dfrac{-27}{2}\)
\(u_8=u_1\cdot q^7=\dfrac{-8}{3}\cdot\left(-\dfrac{3}{2}\right)^7=\dfrac{-2^3}{3}\cdot\dfrac{\left(-3\right)^7}{2^7}=\dfrac{2^3}{3}\cdot\dfrac{3^7}{2^7}=\dfrac{3^4}{2^4}=\dfrac{81}{16}\)
Câu 3:
\(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1\cdot q^4=51\\u_1\cdot q+u_1\cdot q^5=102\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+u_1\cdot q^4=51\\q\left(u_1+u_1\cdot q^4\right)=102\end{matrix}\right.\Leftrightarrow q=2\)
\(u_1+u_5=51\)
=>\(u_1\left(1+q^4\right)=51\)
=>\(u_1=\dfrac{51}{2^4+1}=\dfrac{51}{17}=3\)
\(u_4=u_1\cdot q^3=3\cdot2^3=24\)
\(u_{12}=u_1\cdot q^{11}=3\cdot2^{11}=6144\)