Tính S = a + b + c + d + e
a) c = 2a ; d = 2b ; 6b + 5c = 6e ; 2a + 3b = 2e ; d - a = 40
b) 3b = 4a ; 3d = 4c ; 3b + c = 2e ; 6d - a = 5e ; c - b = 1
c) 3b = 4a ; 3d = 4c ; 3b + c = 2e ; 4e + b = 5d ; d - a = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng 2 số là : 428 x 2 = 856
Ta có ; ab +7ab = 856
ab + 700 + ab = 856
2 x ab = 856 - 700
2 x ab = 156
ab = 156 : 2
ab = 78
Vậy 2 số ddos là 78 và 778
#chanh


\(a,x^3+xy-2y-8\)
\(=\left(x^3-8\right)+\left(xy-2y\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4+y\right)\)
\(b,8x^3-12xy+2x^2y-3y^2\)
\(=\left(8x^3+2x^2y\right)-\left(12xy+3y^2\right)\)
\(=2x^2\left(4x+y\right)-3y\left(4x+y\right)\)
\(=\left(2x^2-3y\right)\left(4x+y\right)\)

\(|x-y+4|=-|y-2|\)
\(\Rightarrow|x-y+4|+|y-2|=0\)
Vì \(|x-y+4|\ge0\forall x;y\)và \(|y-2|\ge0\forall y\)
Mà \(|x-y+4|+|y-2|=0\)
\(\Rightarrow\hept{\begin{cases}|x-y+4|=0\\|y-2|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y+4=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2+4=0\\2-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
Vậy x = -2 ;y = 2
\(|x-y+4|=-|y-2|\)
Vì 1 bên là dương, 1 bên là âm mà bằng nhau nên cả hai biểu thức đều phải bằng 0 để đáp ứng đề bài
Xét \(-|y-2|=0\Rightarrow y-2=0\Rightarrow y=0+2=2\)( vì biểu thức đó bằng 0 )
Xét \(|x-y+4|=0\Rightarrow|x-2+4|=0\Rightarrow x-2+4=0\)( vì biểu thức đó bằng 0 )
\(\Rightarrow x=0-4+2=-2\)
Vậy \(x=-2\)
\(y=2\)

A B C D E
t chỉ chứng minh được CD = BE thôi
a, góc DAB = góc EAC = 90
góc BAC chung
góc DAB + góc BAC = góc DAC
góc EAC + góc BAC = góc EAB
=> góc DAC = góc EAB
xét tam giác DAC và tam giác BAE có :
AE = AC do tam giác AEC vuông cân tại A (gt)
AD = AB do tam giác ABD vuông cân tại A (Gt)
=> tam giác DAC = tam giác BAE (c-g-c)
=> CD = BE (đn)
b, vẽ hình lại nhìn cho rõ
A B C H D E M N O
AH căt DE tại O
Kẻ EM _|_ AO tại M
Kẻ DN _|_ AO tại N
+ có góc BAH + góc BAD + góc DAN = 180
mà góc BAD = 90 do tam giác BAD vuông cân tại A (GT)
=> góc BAH + góc DAN = 90
mà góc BAH + gócABH = 90 do tam giác ABH vuông tại H
=> góc DAN = góc ABH
xét tam giác AND và tam giác BHA có : AB = AD (câu a)
góc DNA = góc BHA = 90
=> tam giác AND = tam giác BHA (ch-gn)
=> AH = DN (đn) (1)
+ góc HAC + góc CAE + góc EAM = 180
góc CAE = 90 (câu a)
=> góc HAC + góc EAM = 90
góc HAC + góc HCA = 90 do tam giác HAC vuông tại H
=> góc EAM = góc HCA
xét tam giác AHC và tam giác EMA có : AC = AE (câu a)
góc AHC = góc EMA = 90
=> tam giác AHC = tam giác EMA (ch-gn)
=> AH = ME (đn) (2)
(1)(2) => ME = DN (3)
DN _|_ AH (cách vẽ)
EM _|_ AH (cách vẽ)
=> DN // EM (tc)
=> góc NDO = góc OEM (2 góc slt)
xét tam giác DNO và tam giác EMO có : góc DNO = góc EMO = 90 và (3)
=> tam giác DNO = tam giác EMO (gn-cgv)
=> DO = OE
mà O nằm giữa D; E
=> O là trung điểm của DE

a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)
b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)
\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)
\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)
\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)
\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)
\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)
=> a = 4
Cách ngắn hơn :
\(đkxđ\Leftrightarrow x\ge0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(b,A=2\Rightarrow a-\sqrt{a}=2\)
\(\Rightarrow a-\sqrt{a}-2=0\)
\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)
\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)
\(\Rightarrow a=4\)
\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)
Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)