Cho tam giác ABC vuông tại B có AB=6cm , AC= 10cm . Tính độ dài cạnh BC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://h.vn/hoi-dap/question/44797.html
bn tham khảo ở đây nha!! hok tốt!!
Do \(x,y,z\inℤ^+\)
\(\Rightarrow\hept{\begin{cases}x+y< x+y+z\\y+z< x+y+z\\z+x< x+y+z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{x+y}>\frac{x}{x+y+z}\\\frac{y}{y+z}>\frac{y}{x+y+z}\\\frac{z}{z+x}>\frac{z}{x+y+z}\end{cases}}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>1\)
Dễ dàng nhận thấy : \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(=>\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
\(=>đpcm\)
a)Xét tam giác ABH có: HBA + BAH + BHA = 180 (Tổng ba góc trong một tam giác)
\(\implies\) 60 + BAH + 90 =180
\(\implies\) BAH = 30
b) Xét tam giác AHI và tam giác ADI có :
AH = AD (gt)
AI chung
HI=DI (gt)
\(\implies\) tam giác AHI = tam giác ADI (c-c-c)
\(\implies\) AIH = AID (hai góc tương ứng)
Mà AIH + AID = 180 (hai góc kề bù ) (2)
\(\implies\) AIH + AIH =180
\(\implies\) 2.AIH = 180
\(\implies\) AIH = 90(1)
Từ (1);(2) \(\implies\) AIH = AID = 90
\(\implies\) AI vuông góc với HD
c)Ta có:HAI = DAI (tam giác AHI = tam giác ADI)
Hay HAK = DAK
Xét tam giác AHK và tam giác ADK có :
AH = AD (gt)
AK chung
HAK = DAK (cmt)
\(\implies\) tam giác AHK = tam giác ADK (c-g-c)
+)Ta có:BAH + HAC = BAC
\(\implies\) BAH + HAC = 90
\(\implies\) 30 +HAC =90
\(\implies\) HAC = 60
Hay HAD =60
\(\implies\) HAK + DAK =60
Mà : HAK = DAK (cmt)
\(\implies\) HAK + HAK =60
\(\implies\) 2 HAK = 60
\(\implies\) HAK = 30
Xét tam giác vuông BHA và tam giác giác vuông KHA có:
HA chung
BAH = KAH =30 (cmt)
\(\implies\) tam giác vuông BHA = tam giác vuông KHA (cạnh góc vuông - góc nhọn kề)
\(\implies\) BH = KH (hai cạnh tương ứng)
\(\implies\) H là trung điểm của BK
Nguyễn Thuỳ Linh Hình như bài này t lm cho c r mà nhỉ
( Hình tự vẽ )
a) +) Xét \(\Delta\)ABE và \(\Delta\)ACD có
AB = AC ( gt)
\(\widehat{BAC}\) : góc chung
AE = AD ( gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c-g-c)
b) Theo câu a ta có \(\Delta\)ABE = \(\Delta\)ACD
=> BE = CD ( 2 cạnh tương ứng )
c) +) Xét \(\Delta\) ABC cân tại A
=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (1) ( tính chất tam giác cân )
+) Xét \(\Delta\)AED có AE = AD ( gt)
=> \(\Delta\)AED cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\) (2) ( tính chất tam giác cân )
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{AED}\)
Mà 2 góc này ở vị trí đồng vị
=> ED // BC
@@ Hc tốt
Takigawa Miu_
1 vài câu thôi bạn
Câu 1:
1) Bạn vt thiếu đề
2)
\(24-16\left|x-\frac{1}{2}\right|=23\)
\(\Leftrightarrow16\left|x-\frac{1}{2}\right|=1\)
\(\Leftrightarrow\left|x-\frac{1}{2}\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=1\\x-\frac{1}{2}=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\frac{1}{2}\\x=-1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{1}{2}\right\}\)
3)
Thay \(x=-\frac{1}{2}\) vào công thức y = f(x) = x2 - 2 ta có
\(y=f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-2\)
\(\Leftrightarrow f\left(-\frac{1}{2}\right)=\frac{1}{4}-2\)
\(\Leftrightarrow f\left(-\frac{1}{2}\right)=-\frac{7}{4}\)
Vậy ....
Câu 3
Cho ba số thực a và b thỏa mãn : a/2014 = b/2015 = c/2016
CMR : 4(a-b)(b-c)=(c-a)^2
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
\(\Leftrightarrow\hept{\begin{cases}a=2014k\\b=2015k\\c=2016k\end{cases}}\)
Thay a = 2014 k ; b = 2015k ; c = 2016 k vào 4 ( a - b ) ( b - c) ta có
4(a-b)(b-c) = 4 . ( 2014k - 2015k ) (2015k - 2016k)
= 4 . (-k ). ( - k)
= 4k2 (1)
Thay a = 2014k ; c = 2016k vào (c - a) 2 ta có
(c - a )2 = ( 2016k - 2014k) 2 = ( - 2k) 2 = (- 2)2 . k2 = 4k2 (2)
Từ (1) và (2) => 4(a-b)(b-c) = 4(a-b)(b-c)
~~~~ Dài quá bn ơi tự lm đi chớ
## Mirai
minh tra lời bn nên mình chết mất rùi :D
nên ko gửi câu trả lời dc :D
A B C 6 cm 10 cm
Áp dụng định lý Pytago vào tam giác ABC vuông tại B có:
\(AC^2=AB^2+BC^2\)
Thay AB=6cm, AC=10cm
\(\Rightarrow10^2=6^3+BC^2\)
\(\Rightarrow100=36+BC^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8\left(cm\right)\left(BC>0\right)\)
bạn tự vẽ hình nha
Áp dụng định lý pytago vào tam giác ABC vuông tại B có:
BC2 = AC2 - AB2
hay BC2 = 102 - 62
hay BC2 = 64
vì BC là độ dài một cạnh của tam giác nên BC > 0
nên BC = \(\sqrt{64}\)= 8 (cm)