Cho 5 số dương a b c d e
CMR
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}>\frac{25}{a+b+c+d+e}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}+x^3=y^3\)
\(\Rightarrow y^3>x^3\)
Xét hiệu \(y^3-\left(x+2\right)^3=x^3+x^2+x+1-x^3-6x^2-12x-8\)
\(=-5x^2-11x-7\)
\(=-5\left(x+\frac{11}{10}\right)^2-\frac{19}{20}< 0\)
\(\Rightarrow y^3< \left(x+2\right)^3\)
Tóm lại \(x^3< y^3< \left(x+2\right)^3\)
Mà x;y nguyên nên y = x + 1
Thế vào pt ban đầu ta được
\(1+x+x^2+x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\Rightarrow y=1\\x=-1\Rightarrow y=0\end{cases}}\)
Vậy ...
\(Pt\Leftrightarrow x^6+\left(x^3-y\right)^2=64\)
\(\Rightarrow x^6\le64\)
\(\Rightarrow-2\le x\le2\)
Mà x nguyên nên \(x\in\left\{-2;-1;0;1;2\right\}\)
Thế vào tìm được y -> làm nốt
Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b ; an - bn \(⋮\)a - b
Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 )
20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ; 20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019
\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019
0,1 0,2 0,3 0,4..........0.9
minh chi biet la so lon hon 0 ma nho hon 1 thoi
\(B=\left(x^4+y^4+2x^2y^2\right)+z^4-2z^2\left(x^2+y^2\right)=\left(x^2+y^2\right)^2-2z^2\left(x^2+y^2\right)+z^4\)
\(=\left(x^2+y^2-z^2\right)^2\)
Áp dụng bất đẳng thức Cauchy- Schwartz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)
Dấu "=" xảy ra khi a = b = c = d = e